[1]
Robert, A. Freitas, What is nanomedicine? Nanomedicine, 2005, 1(1), 2-9.
[3]
Paolo, F.; Larry, J.K. Nanotechnology: Improving clinical testing. Clin. Chem., 2010, 56, 1384-1389.
[4]
Jain, K.K. The handbook of nanomedicine; Humana Press: Totowa, NJ, USA, 2008.
[5]
Jain, K.K. Nanotechnology in clinical laboratory diagnostics. Clin. Chim. Acta, 2005, 358, 37-54.
[6]
Nanoscience and nanotechnologies: Opportunities and uncertainties. The Royal Society and Royal Academy of Engineering’s Report, 2004.
[7]
Feynman, R.P. There’s plenty of room at the bottom. Eng. Sci. (CalTech), 1960, 23, 22-36.
[8]
Taniguchi, N. On the basic concept of‚ nano-technology., In:
Proceedings of the Intersnational Conference on Production
Engineering, part II, Japan Society of Precision Engineering,
Tokyo,. 1974.
[9]
Nano in Healthcare - Nanotechnology applications. European
Commission, Research & Innovation - Key Enabling Technologies.
(Accessed on: 28th April, 2016)..
[10]
The FHE Team. The Promise of Nanomedicine and Future Human
Evolution. (Accessed on: 21st april, 2016)..
[11]
Omid, C.F.; Robert, L. Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliv. Rev., 2006, 58, 1456-1459.
[13]
Shelton, D.C.; Samuel, A.W.; Gregory, M.L. Nanotechnological applications in medicine. Curr. Opin. Biotechnol., 2007, 18, 26-30.
[14]
Alexandrina, SOLDATENKO University of Strasbourg. Current uses of nanotechnology. (Accessed on: 25th April,. 2016.
[15]
Rajesh, S.; James, W.; Lillard, J. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86, 215-223.
[16]
Redhead, H.M.; Davis, S.S.; Illum, L. Drug delivery in poly (lactide-coglycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: In vitro characterisation and in vivo evaluation. J. Control. Release, 2001, 70, 353-363.
[19]
John, C.B.; Victoria, L.K.; Susanna, H.P. Expert opinion on nanotechnology: Risks, benefits, and regulation. J. Nanopart. Res., 2008, 10, 549-558.
[20]
Emerich, D.F.; Thanos, C.G. Nanotechnology and medicine. Expert Opin. Biol. Ther., 2003, 3(4), 655-663.
[21]
Freitas, J. Jr.; Robert, A. Nanomedicine, Volume I: Basic capabilities. Landes Bioscience, Georgetown, TX, USA, 1999.
[22]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Nanomedicine: Current status and future prospects. FASEB J., 2005, 19, 311-330.
[23]
Khang, D.; Carpenter, J.; Chun, Y.W.; Pareta, R.; Webster, T.J. Nanotechnology for regenerative medicine. Biomed. Microdevices, 2008, 12(8), 575-587.
[24]
Drexler, K.E.; Peterson, C.; Pergamit, G. Unbounding the Future: The nanotechnology revolution; William Morrow and Company: New York, 1991.
[25]
Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther., 2008, 83, 761-769.
[27]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13, 238-252.
[28]
Ghosh, P. Colloid and interface science, 1st ed; PHI Learning: New Delhi, India, 2009, p. 410 ISBN 978-8120338579..
[29]
Chan, W.C.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281, 2016-2018.
[30]
Cui, Y.; Wei, Q.; Park, H.; Lieber, C.M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293, 1289-1292.
[31]
Buhleier, E.; Wehner, W.; Vogtle, F. Cascade- and nonskid-chain-like syntheses of molecular cavity topologies. Synthesis, 1978, 2, 155-158.
[32]
Zhang, L.; Granick, S. How to stabilize phospholipid liposome (using nanoparticles). Nano Lett., 2006, 6, 694-698.
[33]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4, 145-159.
[34]
Lin, Y-Y.; Kao, H-W.; Li, J-J.; Hwang, J-J.; Tseng, Y-L.; Lin, W-J. Tumor burden talks in cancer treatment with PEGylated liposomal drugs. PLoS One, 2013, 8(5), e63078.
[35]
Woodle, M.C. Controlling liposome blood clearance by surface grafted polymers. Adv. Drug Deliv. Rev., 1998, 32, 139-152.
[36]
Nagayama, S. Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int. J. Pharm., 2007, 342, 215-221.
[39]
Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599.
[40]
Betsley, T.A.; Hessler, J.A.; Mecke, A.; Banaszak, H.M.M.; Orr, B.G.; Uppuluri, S. Tapping mode atomic force microscopy investigation of poly(amidoamine) core-shell tecto(dendrimers) using carbon nanoprobes. Langmuir, 2002, 18, 3127-3133.
[41]
Tomalia, D.A.; Brothers, II, H.M.; Piehler, L.T.; Durst, H.D.; Swanson, D.R. Partial shell-filled core-shell tecto(dendrimers): A strategy to surface differentiated nano-clefts and cusps. Proc. Natl. Acad. Sci. USA, 2002, 99, 5081-5087.
[42]
Quintana, A.; Raczka, E.; Piehler, L.; Lee, I.; Mue, A.; Majoros, I. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharmaceut. Res., 2000, 19, 1310-1316.
[43]
West, J.L.; Halas, N.J. Applications of nanotechnology to biotechnology. Curr. Opin. Biotechnol., 2000, 11, 215-227.
[44]
Sershen, S.R.; Westcott, S.L.; Halas, N.J.; West, J.L. Temperature-sensitive polymer-nanoshell composite for photothermally modulated drug delivery. J. Biomed. Mater. Res., 2000, 51, 293-308.
[45]
Wang, Y.; Chen, L. Quantum dots, lighting up the research and development of nanomedicine. Nanomed. NBM, 2011, 7, 385-402.
[46]
Huang, H.C.; Barua, S.; Sharma, G.; Dey, S.K.; Rege, K. Inorganic nanoparticles for cancer imaging and therapy. J. Control. Release, 2011, 155, 344-357.
[47]
Weissleder, R.; Elizondo, G.; Wittenberg, J.; Lee, A.S.; Josephson, L.; Brady, T.J. Ultrasmall superparamagnetic iron oxide: An intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology, 1990, 175, 494-498.
[48]
Logothetidis, S. Nanotechnology in medicine: The medicine of tomorrow and nanomedicine. Hippokratia, 2006, 10, 7-21.
[49]
Saini, S.; Edelman, R.R.; Sharma, P.; Li, W.; Mayo-Smith, W.; Slater, G.J.; Eisenberg, P.J.; Hahn, P.F. Blood-pool MR contrast material for detection and characterization of focal hepatic lesions: Initial clinical experience with ultrasmall superparamagnetic iron oxide (AMI-227). AJR Am. J. Roentgenol., 1995, 164, 1147-1152.
[50]
Mali, S. Nanotechnology for Surgeons. Indian J. Surg., 2013, 75(6), 485-492.
[51]
Mamo, T.; Moseman, E.A.; Kolishetti, N.; Salvador-Morales, C.; Shi, J.; Kuritzkes, D.R.; Langer, R.; Von Andrian, U.; Farokhzad, O.C. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine (Lond.), 2010, 5(2), 269-285.
[52]
Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer, 2006, 6, 688-701.
[53]
Davis, F.F. The origin of pegnology. Adv. Drug Deliv. Rev., 2002, 54, 457-458.
[54]
Kievit, F.M.; Zhang, M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc. Chem. Res., 2011, 44, 853-862.
[55]
Gaumet, M. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm., 2008, 69, 1-9.
[56]
Emerich, D.F.; Thanos, C.G. Targeted nanoparticle-based drug delivery and diagnosis. J. Drug Target., 2007, 15, 163-183.
[57]
Groneberg, D.A.; Giersig, M.; Welte, T.; Pison, U. Nanoparticle-based diagnosis and therapy. Curr. Drug Targets, 2006, 7, 643-648.
[58]
Muthu, M.S.; Singh, S. Targeted nanomedicines: Effective treatment modalities for cancer, AIDS and brain disorders. Nanomedicine, 2009, 4, 105-118.
[59]
Gao, W.; Liu, W.; Christensen, T.; Zalutsky, M.R.; Chilkoti, A. In situ growth of a PEG-like polymer from the C terminus of an intein fusion protein improves pharmacokinetics and tumor accumulation. Proc. Natl. Acad. Sci. USA, 2010, 107(38), 16432-16437.
[60]
Lamprecht, A.; Ubrich, N.; Yamamoto, H.; Schafer, U.; Takeuchi, H.; Maincent, P.; Kawashima, Y.; Lehr, C.M. Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. J. Pharmacol. Exp. Ther., 2001, 299, 775-781.
[61]
Duncan, R.; Sat, Y-N. Tumour targeting by Enchanced Permeability and Retention (EPR) effect. Ann. Oncol., 1998, 9(2), 39.
[62]
Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumours. Nat. Rev. Clin. Oncol., 2010, 7, 653-664.
[63]
Samina, N.; Tajammul, H.; Attiya, A.; Umer, R.; Alexander, J.M. Nanomaterials in combating cancer: Therapeutic applications and developments. Nanomed. Nanotechnol. Biol. Med., 2014, 10, 19-34.
[64]
Janib, S.M.; Moses, A.S.; MacKay, J.A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev., 2010, 62, 1052-1063.
[66]
Mark, E.D.; Jonathan, E.Z.; Chung, H.J.; Choi, C.H.; David, S.; Anthony, T.; Christopher, A.A.; Yun, Y.; Jeremy, D.H.; Antoni, R. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 2010, 464, 1067-1070.
[67]
Milane, L.J.; Daun, Z.; Amiji, M. Development of EGFR-targeted polymer blend nanocarriers for paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. Mol. Pharmacol., 2010, 8(1), 185-203.
[68]
Kam, N.W. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. In: Proceedings of the National Academy of Sciences, USA2009, pp. 11600-11605.
[69]
Lee, H.; Yoon, T.J.; Figueiredo, J.L.; Swirski, F.K.; Weisseleder, R. Rapid detection and profiling of cancer cells in fine-needle aspirates. In: Proceedings of the National Academy of Sciences, USA2009, pp. 12459-12464.
[70]
Cheng, J.; Teply, B.A.; Sherifi, I.; Sung, J.; Luther, G.; Gu, F.X.; Levy-Nissenbaum, E.; Radovic-Moreno, A.F.; Langer, R.; Farokhzad, O.C. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials, 2007, 28(5), 869-876.
[71]
Danhier, F. Lecouturier, N.; Vroman, B.; Jerome, C.; Marchand-Brynaert, J.; Feron, O.; Preat, V. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation. J. Control. Release, 2009, 133(1), 11-17.
[72]
Gryparis, E.C.; Hatziapostolou, M.; Papadimitriou, E.; Avgoustakis, K. Anticancer activity of cisplatin-loaded PLGA-mPEG nanoparticles on LNCaP prostate cancer cells. Eur. J. Pharm. Biopharm., 2007, 67(1), 1-8.
[73]
Harisinghani, M.G.; Weissleder, R. Sensitive, noninvasive detection of lymph node metastases. PLoS Med., 2004, 1, e66.
[74]
Johannsen, M.; Gneveckow, U.; Taymoorian, K.; Thiesen, B.; Waldofner, N. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a prospective phase I trial. Int. J. Hyperthermia, 2007, 23, 315-323.
[75]
Ogawara, K.; Un, K.; Tanaka, K.; Hiqaki, K.; Kimura, T. In vivo anti-tumor effect of PEG liposomal doxorubicin (DOX) in DOX-resistant tumor-bearingmice: involvement of cytotoxic effect onvascular endothelial cells. J. Control. Release, 2009, 133(1), 4-10.
[76]
MacKay, J.A.; Chen, M.; McDaniel, J.R.; Liu, W.; Simnick, A.J.; Chilkoti, A. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumors after a single injection. Nat. Mater., 2009, 8(12), 993-999.
[77]
Murakami, M.; Cabral, H.; Matsumoto, Y.; Wu, S.; Kano, M.R.; Yamori, T.; Nishiyama, N.; Kataoka, K. Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting. Sci. Transl. Med., 2011, 3(64), 64ra2.
[78]
Tokumasu, F.; Fairhurst, R.M.; Ostera, G.R.; Brittain, N.J.; Hwanq, J.; Wellems, T.E.; Dvorak, J.A. Band 3 modifications in Plasmodium falciparum-infected AA and CC erythrocytes assayed by autocorrelation analysis using quantum dots. J. Cell Sci., 2005, 118, 1091-1098.
[79]
Andrew, D.M.; Robert, J.A.; Tilman, B.; Vicki, C.; Ken, D.; Gunter, O.; Martin, A.P.; John, R.; Anthony, S.; Vicki, S.; Sally, S.T.; Lang, T.; Nigel, J.W.; David, B.W. Safe handling of nanotechnology. Nature, 2006, 444, 267-269.
[80]
Pourmand, A.; Abdollahi, M. Current opinion on nanotoxicology. Daru, 2012, 20(1), 2008-2031.
[81]
Syed, A.A.; Muhammad, T. Nanotechnology and its implication in medical science. J. Pak. Med. Assoc., 2014, 64, 984-986.