Abstract
The molecular interactions occurring at the interface between the antigen presenting cell (APC) and the T lymphocyte play an important role in the immune surveillance against infectious agents and tumors, as well as in autoimmunity and transplant rejection. The significance of the APC-T cell interaction in immunity is underscored by the observation that deficiencies in the function of either one of these two cell types cause extreme susceptibility to infections and tumor growth. Furthermore, a disregulated APC-T cell interaction can initiate autoimmunity. Thus, antigen recognition by T cells must be tightly regulated in order to ensure protection against pathogens and tumors, avoiding activation of self-reactive T cells. Efficient T cell activation requires two simultaneous signals provided by the APC: Antigen (or signal 1) and co-stimulation (or signal 2). The specificity of antigen recognition by T cells (signal 1) is controlled exclusively by the T cell receptor (TCR), an extremely diverse heterodimeric protein composed of disulfide-bonded ? and ? chains. While it is clear that the TCR recognizes antigens as small peptides bound to molecules of the Major Histocompatibility Complex (MHC), the molecular explanation for the specificity of antigen recognition by the ??TCR is just beginning to be elucidated. In this review are described some of the advances made in the understanding of the molecular interactions that define the antigen-specificity of the TCR, and the current models for T cell activation by antigen on APCs are discussed.
Keywords: tcr, peptide-mhc, complex, antigen presenting cell, activating/inhibitory receptors, dendritic cell
Current Pharmaceutical Design
Title: Modulation of T Cell Immunity by TCR / pMHC Dwell Time and Activating / Inhibitory Receptor Pairs on the Antigen-Presenting Cell
Volume: 9 Issue: 3
Author(s): Alexis M. Kalergis
Affiliation:
Keywords: tcr, peptide-mhc, complex, antigen presenting cell, activating/inhibitory receptors, dendritic cell
Abstract: The molecular interactions occurring at the interface between the antigen presenting cell (APC) and the T lymphocyte play an important role in the immune surveillance against infectious agents and tumors, as well as in autoimmunity and transplant rejection. The significance of the APC-T cell interaction in immunity is underscored by the observation that deficiencies in the function of either one of these two cell types cause extreme susceptibility to infections and tumor growth. Furthermore, a disregulated APC-T cell interaction can initiate autoimmunity. Thus, antigen recognition by T cells must be tightly regulated in order to ensure protection against pathogens and tumors, avoiding activation of self-reactive T cells. Efficient T cell activation requires two simultaneous signals provided by the APC: Antigen (or signal 1) and co-stimulation (or signal 2). The specificity of antigen recognition by T cells (signal 1) is controlled exclusively by the T cell receptor (TCR), an extremely diverse heterodimeric protein composed of disulfide-bonded ? and ? chains. While it is clear that the TCR recognizes antigens as small peptides bound to molecules of the Major Histocompatibility Complex (MHC), the molecular explanation for the specificity of antigen recognition by the ??TCR is just beginning to be elucidated. In this review are described some of the advances made in the understanding of the molecular interactions that define the antigen-specificity of the TCR, and the current models for T cell activation by antigen on APCs are discussed.
Export Options
About this article
Cite this article as:
Kalergis M. Alexis, Modulation of T Cell Immunity by TCR / pMHC Dwell Time and Activating / Inhibitory Receptor Pairs on the Antigen-Presenting Cell, Current Pharmaceutical Design 2003; 9 (3) . https://dx.doi.org/10.2174/1381612033392062
DOI https://dx.doi.org/10.2174/1381612033392062 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
![](/images/wayfinder.jpg)
- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements