Review Article

纤毛病中的嗅觉丧失和功能障碍:分子机制和潜在疗法

卷 26, 期 17, 2019

页: [3103 - 3119] 页: 17

弟呕挨: 10.2174/0929867325666180105102447

价格: $65

摘要

背景:纤毛病是一类遗传性多效性遗传疾病,其中纤毛组装,维持和/或功能的改变在多器官系统中表现出外显率。 嗅觉功能障碍是一种临床表现,已在患者和模型生物中显示。 现有的纤毛病治疗仅限于治疗或控制症状。 在过去十年中,潜在的治疗性治疗选择包括小分子和生物制剂的增加。 最近在多元嗅觉感觉神经元中的工作证明了靶向基因疗法在终末分化细胞中恢复纤毛和拯救嗅觉功能的能力。 本综述将讨论目前对嗅觉系统中纤毛虫外显率的理解。重要的是,它将突出药理学和生物学方法,以及它们在嗅觉系统和其他纤毛组织中的潜在治疗价值。 方法:我们对同行评审的研究文献进行了结构化和全面的检索,包括体外,体内,模型生物和临床研究。 从这些出版物中,我们描述了嗅觉系统,并讨论了纤毛病的外显率和纤毛损失对嗅觉功能的影响。 此外,我们概述了不同器官和细胞培养系统中纤毛病的开发疗法,并讨论了它们对哺乳动物嗅觉系统的潜在治疗应用。 结果:在评论中纳入了一百六十一份手稿,其中纤毛病的嗅觉外显率的理解,并讨论了哺乳动物嗅觉系统背景下纤毛病的潜在治疗选择。 四十四份手稿用于生成列出已知先天性嗅觉功能障碍原因的表格,其中前十位与纤毛病相关。 二十三份手稿用于概述小分子对嗅觉系统的潜力。 重点放在HDAC6抑制剂和锂上,两者都显示出稳定微管结构,促进纤毛发生和纤毛延长。 七十五篇手稿用于描述基因治疗和基因治疗策略。 包括实施腺病毒,腺相关病毒(AAV)和慢病毒载体以治疗不同器官系统的纤毛病和对嗅觉系统的应用。 到目前为止,腺病毒和AAV睫状修复术证明了成功的原理性临床前研究。 此外,基因编辑,离体基因治疗和移植可以作为替代治疗和长期方法。 但对于所有方法,需要进一步研究载体免疫原性,特异性和功效的额外评估。 目前,纤毛病治疗仅限于对症治疗,没有治疗选择。 然而,嗅觉系统对治疗的可行性和适应性将促进可行治疗的发展和进步。 结论:本综述的结果强调了纤毛病对越来越多的先天性嗅觉功能障碍的贡献。 来自其他器官系统的有希望的结果意味着生物制剂的可行性,基因疗法的结果被证明是纤毛病和嗅觉功能障碍的可行治疗选择。

关键词: 嗅觉功能障碍,纤毛病,嗅上皮,基因治疗,小分子,嗅觉丧失,AAV。

[1]
Berbari, N.F.; O’Connor, A.K.; Haycraft, C.J.; Yoder, B.K. The primary cilium as a complex signaling center. Curr. Biol., 2009, 19(13), R526-R535.
[http://dx.doi.org/10.1016/j.cub.2009.05.025] [PMID: 19602418]
[2]
Goetz, S.C.; Anderson, K.V. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet., 2010, 11(5), 331-344.
[http://dx.doi.org/10.1038/nrg2774] [PMID: 20395968]
[3]
Takeda, S.; Narita, K. Structure and function of vertebrate cilia, towards a new taxonomy. Differentiation, 2012, 83(2), S4-S11.
[http://dx.doi.org/10.1016/j.diff.2011.11.002] [PMID: 22118931]
[4]
Ware, S.M.; Aygun, M.G. -; Hildebrandt, F. Spectrum of clinical diseases caused by disorders of primary cilia. Proc. Am. Thorac. Soc., 2011, 8(5), 444-450.
[http://dx.doi.org/10.1513/pats.201103-025SD] [PMID: 21926397]
[5]
Reiter, J.F.; Leroux, M.R. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol., 2017, 18(9), 533-547.
[http://dx.doi.org/10.1038/nrm.2017.60] [PMID: 28698599]
[6]
Menco, B.P.; Farbman, A.I. Genesis of cilia and microvilli of rat nasal epithelia during pre-natal development. I. Olfactory epithelium, qualitative studies. J. Cell Sci., 1985, 78, 283-310.
[PMID: 4093475]
[7]
Menco, B.P.; Farbman, A.I. Genesis of cilia and microvilli of rat nasal epithelia during pre-natal development. II. Olfactory epithelium, a morphometric analysis. J. Cell Sci., 1985, 78, 311-336.
[PMID: 4093476]
[8]
Joiner, A.M.; Green, W.W.; McIntyre, J.C.; Allen, B.L.; Schwob, J.E.; Martens, J.R. Primary cilia on horizontal basal cells regulate regeneration of the olfactory epithelium. J. Neurosci., 2015, 35(40), 13761-13772.
[http://dx.doi.org/10.1523/JNEUROSCI.1708-15.2015] [PMID: 26446227]
[9]
Williams, C.L.; McIntyre, J.C.; Norris, S.R.; Jenkins, P.M.; Zhang, L.; Pei, Q.; Verhey, K.; Martens, J.R. Direct evidence for BBSome-associated intraflagellar transport reveals distinct properties of native mammalian cilia. Nat. Commun., 2014, 5, 5813.
[http://dx.doi.org/10.1038/ncomms6813] [PMID: 25504142]
[10]
Ulloa-Aguirre, A.; Conn, P.M. Pharmacoperones as a new therapeutic approach: in vitro identification and in vivo validation of bioactive molecules. Curr. Drug Targets, 2016, 17(13), 1471-1481.
[http://dx.doi.org/10.2174/1389450117666160307143345] [PMID: 26953247]
[11]
Rutkowska, A.; Dev, K.K.; Sailer, A.W. The role of the Oxysterol/EBI2 pathway in the immune and central nervous systems. Curr. Drug Targets, 2016, 17(16), 1851-1860.
[http://dx.doi.org/10.2174/1389450117666160217123042] [PMID: 26898310]
[12]
Liapakis, G.; Matsoukas, M-T.; Karageorgos, V.; Venihaki, M.; Mavromoustakos, T.; Family, B.G. Family B G protein-coupled receptors and their ligands: from structure to function. Curr. Med. Chem., 2017, 24(31), 3323-3355.
[http://dx.doi.org/10.2174/0929867324666170303162416] [PMID: 28266266]
[13]
Hauser, A.S.; Attwood, M.M.; Rask-Andersen, M.; Schiöth, H.B.; Gloriam, D.E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov., 2017, 16(12), 829-842.
[http://dx.doi.org/10.1038/nrd.2017.178] [PMID: 29075003]
[14]
Temmel, A.F.P.; Quint, C.; Schickinger-Fischer, B.; Klimek, L.; Stoller, E.; Hummel, T. Characteristics of olfactory disorders in relation to major causes of olfactory loss. Arch. Otolaryngol. Head Neck Surg., 2002, 128(6), 635-641.
[http://dx.doi.org/10.1001/archotol.128.6.635] [PMID: 12049556]
[15]
Gopinath, B.; Anstey, K.J.; Sue, C.M.; Kifley, A.; Mitchell, P. Olfactory impairment in older adults is associated with depressive symptoms and poorer quality of life scores. Am. J. Geriatr. Psychiatry, 2011, 19(9), 830-834.
[http://dx.doi.org/10.1097/JGP.0b013e318211c205] [PMID: 21422904]
[16]
Philpott, C.M.; Boak, D. The impact of olfactory disorders in the United kingdom. Chem. Senses, 2014, 39(8), 711-718.
[http://dx.doi.org/10.1093/chemse/bju043] [PMID: 25201900]
[17]
Holbrook, E.H.; Leopold, D.A. An updated review of clinical olfaction. Curr. Opin. Otolaryngol. Head Neck Surg., 2006, 14(1), 23-28.
[http://dx.doi.org/10.1097/01.moo.0000193174.77321.39] [PMID: 16467634]
[18]
Kulaga, H.M.; Leitch, C.C.; Eichers, E.R.; Badano, J.L.; Lesemann, A.; Hoskins, B.E.; Lupski, J.R.; Beales, P.L.; Reed, R.R.; Katsanis, N. Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nat. Genet., 2004, 36(9), 994-998.
[http://dx.doi.org/10.1038/ng1418] [PMID: 15322545]
[19]
McEwen, D.P.; Koenekoop, R.K.; Khanna, H.; Jenkins, P.M.; Lopez, I.; Swaroop, A.; Martens, J.R. Hypomorphic CEP290/NPHP6 mutations result in anosmia caused by the selective loss of G proteins in cilia of olfactory sensory neurons. Proc. Natl. Acad. Sci. USA, 2007, 104(40), 15917-15922.
[http://dx.doi.org/[DOI: 10.1073/pnas.0704140104] [PMID: 17898177]
[20]
Tadenev, A.L.D.; Kulaga, H.M.; May-Simera, H.L.; Kelley, M.W.; Katsanis, N.; Reed, R.R. Loss of Bardet-Biedl syndrome protein-8 (BBS8) perturbs olfactory function, protein localization, and axon targeting. Proc. Natl. Acad. Sci. USA, 2011, 108(25), 10320-10325.
[http://dx.doi.org/10.1073/pnas.1016531108] [PMID: 21646512]
[21]
Mcintyre, J.C.; Davis, E.E.; Joiner, A.; Williams, C.L.; Tsai, I.; Jenkins, P.M.; Mcewen, D.P.; Zhang, L.; Escobado, J.; Thomas, S.; Szymanska, K.; Johnson, C.A.; Beales, P.L.; Green, E.D.; Mullikin, J.C.; Comparative, N.; Program, S.; Sabo, A.; Muzny, D.M.; Gibbs, R.A.; Attié-bitach, T.; Yoder, B.K.; Reed, R.R.; Katsanis, N.; Martens, J.R. Gene therapy rescues cilia defects and restores olfactory function in a mammalian ciliopathy model. Nat. Med., 2012, 18(9), 1423-1428.
[http://dx.doi.org/10.1038/nm.2860]
[22]
Williams, C.L.; Uytingco, C.R.; Green, W.W.; McIntyre, J.C.; Ukhanov, K.; Zimmerman, A.D.; Shively, D.T.; Zhang, L.; Nishimura, D.Y.; Sheffield, V.C.; Martens, J.R. Gene therapeutic reversal of peripheral olfactory impairment in Bardet-Biedl Syndrome. Mol. Ther., 2017, 25(4), 904-916.
[http://dx.doi.org/10.1016/j.ymthe.2017.02.006] [PMID: 28237838]
[23]
Abd-El-Barr, M.M.; Sykoudis, K.; Andrabi, S.; Eichers, E.R.; Pennesi, M.E.; Tan, P.L.; Wilson, J.H.; Katsanis, N.; Lupski, J.R.; Wu, S.M. Impaired photoreceptor protein transport and synaptic transmission in a mouse model of Bardet-Biedl syndrome. Vision Res., 2007, 47(27), 3394-3407.
[http://dx.doi.org/10.1016/j.visres.2007.09.016] [PMID: 18022666]
[24]
Fath, M.A.; Mullins, R.F.; Searby, C.; Nishimura, D.Y.; Wei, J.; Rahmouni, K.; Davis, R.E.; Tayeh, M.K.; Andrews, M.; Yang, B.; Sigmund, C.D.; Stone, E.M.; Sheffield, V.C. Mkks-null mice have a phenotype resembling Bardet-Biedl syndrome. Hum. Mol. Genet., 2005, 14(9), 1109-1118.
[http://dx.doi.org/10.1093/hmg/ddi123] [PMID: 15772095]
[25]
Nishimura, D.Y.; Fath, M.; Mullins, R.F.; Searby, C.; Andrews, M.; Davis, R.; Andorf, J.L.; Mykytyn, K.; Swiderski, R.E.; Yang, B.; Carmi, R.; Stone, E.M.; Sheffield, V.C. Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proc. Natl. Acad. Sci. USA, 2004, 101(47), 16588-16593.
[http://dx.doi.org/10.1073/pnas.0405496101] [PMID: 15539463]
[26]
Mykytyn, K.; Mullins, R.F.; Andrews, M.; Chiang, A.P.; Swiderski, R.E.; Yang, B.; Braun, T.; Casavant, T.; Stone, E.M.; Sheffield, V.C. Bardet-Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proc. Natl. Acad. Sci. USA, 2004, 101(23), 8664-8669.
[http://dx.doi.org/10.1073/pnas.0402354101] [PMID: 15173597]
[27]
Davis, R.E.; Swiderski, R.E.; Rahmouni, K.; Nishimura, D.Y.; Mullins, R.F.; Agassandian, K.; Philp, A.R.; Searby, C.C.; Andrews, M.P.; Thompson, S.; Berry, C.J.; Thedens, D.R.; Yang, B.; Weiss, R.M.; Cassell, M.D.; Stone, E.M.; Sheffield, V.C. A knockin mouse model of the Bardet-Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity. Proc. Natl. Acad. Sci. USA, 2007, 104(49), 19422-19427.
[http://dx.doi.org/10.1073/pnas.0708571104] [PMID: 18032602]
[28]
Pretorius, P.R.; Baye, L.M.; Nishimura, D.Y.; Searby, C.C.; Bugge, K.; Yang, B.; Mullins, R.F.; Stone, E.M.; Sheffield, V.C.; Slusarski, D.C. Identification and functional analysis of the vision-specific BBS3 (ARL6) long isoform. PLoS Genet., 2010, 6(3), e1000884.
[http://dx.doi.org/10.1371/journal.pgen.1000884] [PMID: 20333246]
[29]
Mockel, A.; Obringer, C.; Hakvoort, T.B.M.; Seeliger, M.; Lamers, W.H.; Stoetzel, C.; Dollfus, H.; Marion, V. Pharmacological modulation of the retinal unfolded protein response in Bardet-Biedl syndrome reduces apoptosis and preserves light detection ability. J. Biol. Chem., 2012, 287(44), 37483-37494.
[http://dx.doi.org/10.1074/jbc.M112.386821] [PMID: 22869374]
[30]
Shillingford, J.M.; Murcia, N.S.; Larson, C.H.; Low, S.H.; Hedgepeth, R.; Brown, N.; Flask, C.A.; Novick, A.C.; Goldfarb, D.A.; Kramer-Zucker, A.; Walz, G.; Piontek, K.B.; Germino, G.G.; Weimbs, T. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc. Natl. Acad. Sci. USA, 2006, 103(14), 5466-5471.
[http://dx.doi.org/10.1073/pnas.0509694103] [PMID: 16567633]
[31]
Wahl, P.R.; Serra, A.L.; Le Hir, M.; Molle, K.D.; Hall, M.N.; Wüthrich, R.P. Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrol. Dial. Transplant., 2006, 21(3), 598-604.
[http://dx.doi.org/10.1093/ndt/gfi181] [PMID: 16221708]
[32]
Masyuk, T.V.; Masyuk, A.I.; Torres, V.E.; Harris, P.C.; Larusso, N.F. Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3′,5′-cyclic monophosphate. Gastroenterology, 2007, 132(3), 1104-1116.
[http://dx.doi.org/10.1053/j.gastro.2006.12.039] [PMID: 17383431]
[33]
Ibraghimov-Beskrovnaya, O. Molecular pathogenesis of ADPKD and development of targeted therapeutic options. Nephrol. Dial. Transplant., 2007, 22(12), 3367-3370.
[http://dx.doi.org/10.1093/ndt/gfm426] [PMID: 17971378]
[34]
Chang, M-Y.; Ong, A.C.M. Mechanism-based therapeutics for autosomal dominant polycystic kidney disease: recent progress and future prospects. Nephron Clin. Pract., 2012, 120(1), c25-c34.
[http://dx.doi.org/10.1159/000334166] [PMID: 22205396]
[35]
Torres, V.E.; Chapman, A.B.; Devuyst, O.; Gansevoort, R.T.; Grantham, J.J.; Higashihara, E.; Perrone, R.D.; Krasa, H.B.; Ouyang, J.; Czerwiec, F.S. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med., 2012, 367(25), 2407-2418.
[http://dx.doi.org/10.1056/NEJMoa1205511] [PMID: 23121377]
[36]
Skalicka, K.; Kovacs, L. Ciliotherapy-new opportunity for targeted therapy in autosomal dominant polycystic kidney disease. J. Genet. Syndr. Gene Ther., 2016, 7(5), 5-8.
[http://dx.doi.org/10.4172/2157-7412.1000310]
[37]
Sharma, N.; Malarkey, E.B.; Berbari, N.F.; O’Connor, A.K.; Vanden Heuvel, G.B.; Mrug, M.; Yoder, B.K. Proximal tubule proliferation is insufficient to induce rapid cyst formation after cilia disruption. J. Am. Soc. Nephrol., 2013, 24(3), 456-464.
[http://dx.doi.org/10.1681/ASN.2012020154] [PMID: 23411784]
[38]
Lee, S.H.; Somlo, S. Cyst growth, polycystins, and primary cilia in autosomal dominant polycystic kidney disease. Kidney Res. Clin. Pract., 2014, 33(2), 73-78.
[http://dx.doi.org/10.1016/j.krcp.2014.05.002] [PMID: 26877954]
[39]
Verghese, E.; Weidenfeld, R.; Bertram, J.F.; Ricardo, S.D.; Deane, J.A. Renal cilia display length alterations following tubular injury and are present early in epithelial repair. Nephrol. Dial. Transplant., 2008, 23(3), 834-841.
[http://dx.doi.org/10.1093/ndt/gfm743] [PMID: 17962379]
[40]
Ong, A.C.M. Primary cilia and renal cysts: does length matter? Nephrol. Dial. Transplant., 2013, 28(11), 2661-2663.
[http://dx.doi.org/10.1093/ndt/gft354] [PMID: 23935132]
[41]
Saito, S.; Tampe, B.; Müller, G.A.; Zeisberg, M. Primary cilia modulate balance of canonical and non-canonical Wnt signaling responses in the injured kidney. Fibrogenesis Tissue Repair, 2015, 8(1), 6.
[http://dx.doi.org/10.1186/s13069-015-0024-y] [PMID: 25901180]
[42]
Yu, F.; Ran, J.; Zhou, J. Ciliopathies: does HDAC6 Represent a New Therapeutic Target? Trends Pharmacol. Sci., 2016, 37(2), 114-119.
[http://dx.doi.org/10.1016/j.tips.2015.11.002] [PMID: 26651415]
[43]
Plotnikova, O.V.; Nikonova, A.S.; Loskutov, Y.V.; Kozyu-lina, P.Y.; Pugacheva, E.N.; Golemis, E.A. Calmodulin activation of Aurora-A kinase (AURKA) is required during ciliary disassembly and in mitosis. Mol. Biol. Cell, 2012, 23(14), 2658-2670.
[http://dx.doi.org/10.1091/mbc.e11-12-1056] [PMID: 22621899]
[44]
Mergen, M.; Engel, C.; Müller, B.; Follo, M.; Schäfer, T.; Jung, M.; Walz, G. The nephronophthisis gene product NPHP2/Inversin interacts with Aurora A and interferes with HDAC6-mediated cilia disassembly. Nephrol. Dial. Transplant., 2013, 28(11), 2744-2753.
[http://dx.doi.org/10.1093/ndt/gft316] [PMID: 24026243]
[45]
Dere, R.; Perkins, A.L.; Bawa-Khalfe, T.; Jonasch, D.; Walker, C.L. β-catenin links von Hippel-Lindau to aurora kinase A and loss of primary cilia in renal cell carcinoma. J. Am. Soc. Nephrol., 2015, 26(3), 553-564.
[http://dx.doi.org/10.1681/ASN.2013090984] [PMID: 25313256]
[46]
Ran, J.; Yang, Y.; Li, D.; Liu, M.; Zhou, J. Deacetylation of α-tubulin and cortactin is required for HDAC6 to trigger ciliary disassembly. Sci. Rep., 2015, 5, 12917.
[http://dx.doi.org/10.1038/srep12917] [PMID: 26246421]
[47]
Gradilone, S.A.; Radtke, B.N.; Bogert, P.S.; Huang, B.Q.; Gajdos, G.B.; LaRusso, N.F. HDAC6 Inhibition restores ciliary expression and decreases tumor growth. Cancer Res., 2013, 73(7), 2259-LP-2270.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2938]
[48]
Kai, K.; Satoh, H.; Kajimura, T.; Kato, M.; Uchida, K.; Yamaguchi, R.; Tateyama, S.; Furuhama, K. Olfactory epithelial lesions induced by various cancer chemotherapeutic agents in mice. Toxicol. Pathol., 2004, 32(6), 701-709.
[http://dx.doi.org/10.1080/01926230490524283] [PMID: 15580704]
[49]
Loktev, A.V.; Zhang, Q.; Beck, J.S.; Searby, C.C.; Scheetz, T.E.; Bazan, J.F.; Slusarski, D.C.; Sheffield, V.C.; Jackson, P.K.; Nachury, M.V. A BBSome subunit links ciliogenesis, microtubule stability, and acetylation. Dev. Cell, 2008, 15(6), 854-865.
[http://dx.doi.org/10.1016/j.devcel.2008.11.001] [PMID: 19081074]
[50]
Nakakura, T.; Asano-Hoshino, A.; Suzuki, T.; Arisawa, K.; Tanaka, H.; Sekino, Y.; Kiuchi, Y.; Kawai, K.; Hagiwara, H. The elongation of primary cilia via the acetylation of α-tubulin by the treatment with lithium chloride in human fibroblast KD cells. Med. Mol. Morphol., 2015, 48(1), 44-53.
[http://dx.doi.org/10.1007/s00795-014-0076-x] [PMID: 24760594]
[51]
Miyoshi, K.; Kasahara, K.; Miyazaki, I.; Asanuma, M. Lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Biochem. Biophys. Res. Commun., 2009, 388(4), 757-762.
[http://dx.doi.org/10.1016/j.bbrc.2009.08.099] [PMID: 19703416]
[52]
Thompson, C.L.; Wiles, A.; Poole, C.A.; Knight, M.M. Lithium chloride modulates chondrocyte primary cilia and inhibits Hedgehog signaling. FASEB J., 2016, 30(2), 716-726.
[http://dx.doi.org/10.1096/fj.15-274944] [PMID: 26499268]
[53]
Ramezani, M.; Ebrahimian, M.; Hashemi, M. Current strategies in the modification of PLGA-based gene delivery system. Curr. Med. Chem., 2017, 24(7), 728-739.
[http://dx.doi.org/10.2174/0929867324666161205130416] [PMID: 27919215]
[54]
Wang, K.; Huang, Q.; Qiu, F.; Sui, M. Non-viral delivery systems for the application in p53 cancer gene therapy. Curr. Med. Chem., 2015, 22(35), 4118-4136.
[http://dx.doi.org/10.2174/0929867322666151001121601] [PMID: 26423086]
[55]
Bhosale, R.R.; Gangadharappa, H.V.; Hani, U.; Ali, M.; Osmani, R.; Vaghela, R.; Kulkarni, P.K.; Koganti, V.S. Current perspectives on novel drug delivery systems and therapies for management of prostate cancer: an inclusive review. Curr. Drug Targets, 2017, 18(11), 1233-1249.
[http://dx.doi.org/10.2174/1389450117666160613103705] [PMID: 27296312]
[56]
Muruve, D.A. The innate immune response to adenovirus vectors. Hum. Gene Ther., 2004, 15(12), 1157-1166.
[http://dx.doi.org/10.1089/hum.2004.15.1157] [PMID: 15684693]
[57]
Huang, D.; Pereboev, A.V.; Korokhov, N.; He, R.; Larocque, L.; Gravel, C.; Jaentschke, B.; Tocchi, M.; Casley, W.L.; Lemieux, M.; Curiel, D.T.; Chen, W.; Li, X. Significant alterations of biodistribution and immune responses in Balb/c mice administered with adenovirus targeted to CD40(+) cells. Gene Ther., 2008, 15(4), 298-308.
[http://dx.doi.org/10.1038/sj.gt.3303085] [PMID: 18046426]
[58]
Sammels, E.; Devogelaere, B.; Mekahli, D.; Bultynck, G.; Missiaen, L.; Parys, J.B.; Cai, Y.; Somlo, S.; De Smedt, H. Polycystin-2 activation by inositol 1,4,5-trisphosphate-induced Ca2+ release requires its direct association with the inositol 1,4,5-trisphosphate receptor in a signaling microdomain. J. Biol. Chem., 2010, 285(24), 18794-18805.
[http://dx.doi.org/10.1074/jbc.M109.090662] [PMID: 20375013]
[59]
Wei, F.; Karihaloo, A.; Yu, Z.; Marlier, A.; Seth, P.; Shibazaki, S.; Wang, T.; Sukhatme, V.P.; Somlo, S.; Cantley, L.G. Neutrophil gelatinase-associated lipocalin suppresses cyst growth by Pkd1 null cells in vitro and in vivo. Kidney Int., 2008, 74(10), 1310-1318.
[http://dx.doi.org/10.1038/ki.2008.395] [PMID: 18974761]
[60]
Park, E.Y.; Kim, B.H.; Lee, E.J.; Chang, E.; Kim, D.W.; Choi, S.Y.; Park, J.H. Targeting of receptor for advanced glycation end products suppresses cyst growth in polycystic kidney disease. J. Biol. Chem., 2014, 289(13), 9254-9262.
[http://dx.doi.org/10.1074/jbc.M113.514166] [PMID: 24515114]
[61]
Zhao, H.; Otaki, J.M.; Firestein, S. Adenovirus-mediated gene transfer in olfactory neurons in vivo. J. Neurobiol., 1996, 30(4), 521-530.
[http://dx.doi.org/10.1002/(SICI)1097-4695(199608)30:4<521:AID-NEU7>3.0.CO;2-5] [PMID: 8844515]
[62]
Holtmaat, A.J.G.D.; Hermens, W.T.J.M.C.; Oestreicher, A.B.; Gispen, W.H.; Kaplitt, M.G.; Verhaagen, J. Efficient adenoviral vector-directed expression of a foreign gene to neurons and sustentacular cells in the mouse olfactory neuroepithelium. Brain Res. Mol. Brain Res., 1996, 41(1-2), 148-156.
[http://dx.doi.org/10.1016/0169-328X(96)00085-X] [PMID: 8883946]
[63]
Touhara, K.; Sengoku, S.; Inaki, K.; Tsuboi, A.; Hirono, J.; Sato, T.; Sakano, H.; Haga, T. Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proc. Natl. Acad. Sci. USA, 1999, 96(7), 4040-4045.
[http://dx.doi.org/10.1073/pnas.96.7.4040] [PMID: 10097159]
[64]
Ivic, L.; Pyrski, M.M.; Margolis, J.W.; Richards, L.J.; Firestein, S.; Margolis, F.L. Adenoviral vector-mediated rescue of the OMP-null phenotype in vivo. Nat. Neurosci., 2000, 3(11), 1113-1120.
[http://dx.doi.org/10.1038/80632] [PMID: 11036268]
[65]
Arimoto, Y.; Nagata, H.; Isegawa, N.; Kumahara, K.; Isoyama, K.; Konno, A.; Shirasawa, H. In vivo expression of adenovirus-mediated lacZ gene in murine nasal mucosa. Acta Otolaryngol., 2002, 122(6), 627-633.
[http://dx.doi.org/10.1080/000164802320396303] [PMID: 12403125]
[66]
Ivic, L.; Zhang, C.; Zhang, X.; Yoon, S.O.; Firestein, S. Intracellular trafficking of a tagged and functional mammalian olfactory receptor. J. Neurobiol., 2002, 50(1), 56-68.
[http://dx.doi.org/10.1002/neu.10016] [PMID: 11748633]
[67]
Youngentob, S.L.; Pyrski, M.M.; Margolis, F.L. Adenoviral vector-mediated rescue of the OMP-null behavioral phenotype: enhancement of odorant threshold sensitivity. Behav. Neurosci., 2004, 118(3), 636-642.
[http://dx.doi.org/10.1037/0735-7044.118.3.636] [PMID: 15174942]
[68]
Venkatraman, G.; Behrens, M.; Pyrski, M.; Margolis, F.L. Expression of coxsackie-adenovirus receptor (CAR) in the developing mouse olfactory system. J. Neurocytol., 2005, 34(3-5), 295-305.
[http://dx.doi.org/10.1007/s11068-005-8359-8] [PMID: 16841169]
[69]
Gau, P.; Rodriguez, S.; De Leonardis, C.; Chen, P.; Lin, D.M. Air-assisted intranasal instillation enhances adenoviral delivery to the olfactory epithelium and respiratory tract. Gene Ther., 2011, 18(5), 432-436.
[http://dx.doi.org/10.1038/gt.2010.153] [PMID: 21085195]
[70]
Lemiale, F.; Kong, W.P.; Akyürek, L.M.; Ling, X.; Huang, Y.; Chakrabarti, B.K.; Eckhaus, M.; Nabel, G.J. Enhanced mucosal immunoglobulin A response of intranasal adenoviral vector human immunodeficiency virus vaccine and localization in the central nervous system. J. Virol., 2003, 77(18), 10078-10087.
[http://dx.doi.org/10.1128/JVI.77.18.10078-10087.2003] [PMID: 12941918]
[71]
Damjanovic, D.; Zhang, X.; Mu, J.; Fe Medina, M.; Xing, Z. Organ distribution of transgene expression following intranasal mucosal delivery of recombinant replication-defective adenovirus gene transfer vector. Genet. Vaccines Ther., 2008, 6, 5.
[http://dx.doi.org/10.1186/1479-0556-6-5] [PMID: 18261231]
[72]
Doi, K.; Nibu, K.; Ishida, H.; Okado, H.; Terashima, T. Adenovirus-mediated gene transfer in olfactory epithelium and olfactory bulb: a long-term study. Ann. Otol. Rhinol. Laryngol., 2005, 114(8), 629-633.
[http://dx.doi.org/10.1177/000348940511400808] [PMID: 16190096]
[73]
Zincarelli, C.; Soltys, S.; Rengo, G.; Rabinowitz, J.E. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol. Ther., 2008, 16(6), 1073-1080.
[http://dx.doi.org/10.1038/mt.2008.76] [PMID: 18414476]
[74]
Samulski, R.J.; Zhu, X.; Xiao, X.; Brook, J.D.; Housman, D.E.; Epstein, N.; Hunter, L.A. Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J., 1991, 10(12), 3941-3950.
[http://dx.doi.org/10.1002/j.1460-2075.1991.tb04964.x] [PMID: 1657596]
[75]
Narfström, K.; Katz, M.L.; Ford, M.; Redmond, T.M.; Rakoczy, E.; Bragadóttir, R. In vivo gene therapy in young and adult RPE65-/- dogs produces long-term visual improvement. J. Hered., 2003, 94(1), 31-37.
[http://dx.doi.org/10.1093/jhered/esg015] [PMID: 12692160]
[76]
Narfström, K.; Katz, M.L.; Bragadottir, R.; Seeliger, M.; Boulanger, A.; Redmond, T.M.; Caro, L.; Lai, C.M.; Rakoczy, P.E. Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest. Ophthalmol. Vis. Sci., 2003, 44(4), 1663-1672.
[http://dx.doi.org/10.1167/iovs.02-0595] [PMID: 12657607]
[77]
Le Meur, G.; Stieger, K.; Smith, A.J.; Weber, M.; Deschamps, J.Y.; Nivard, D.; Mendes-Madeira, A.; Provost, N.; Péréon, Y.; Cherel, Y.; Ali, R.R.; Hamel, C.; Moullier, P.; Rolling, F. Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Gene Ther., 2007, 14(4), 292-303.
[http://dx.doi.org/10.1038/sj.gt.3302861] [PMID: 17024105]
[78]
Acland, G.M.; Aguirre, G.D.; Bennett, J.; Aleman, T.S.; Cideciyan, A.V.; Bennicelli, J.; Dejneka, N.S.; Pearce-Kelling, S.E.; Maguire, A.M.; Palczewski, K.; Hauswirth, W.W.; Jacobson, S.G. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol. Ther., 2005, 12(6), 1072-1082.
[http://dx.doi.org/10.1016/j.ymthe.2005.08.008] [PMID: 16226919]
[79]
Bainbridge, J.W.B.; Smith, A.J.; Barker, S.S.; Robbie, S.; Henderson, R.; Balaggan, K.; Viswanathan, A.; Holder, G.E.; Stockman, A.; Tyler, N.; Petersen-Jones, S.; Bhattacharya, S.S.; Thrasher, A.J.; Fitzke, F.W.; Carter, B.J.; Rubin, G.S.; Moore, A.T.; Ali, R.R. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N. Engl. J. Med., 2008, 358(21), 2231-2239.
[http://dx.doi.org/10.1056/NEJMoa0802268] [PMID: 18441371]
[80]
Cideciyan, A.V.; Jacobson, S.G.; Beltran, W.A.; Sumaroka, A.; Swider, M.; Iwabe, S.; Roman, A.J.; Olivares, M.B.; Schwartz, S.B.; Komáromy, A.M.; Hauswirth, W.W.; Aguirre, G.D. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc. Natl. Acad. Sci. USA, 2013, 110(6), E517-E525.
[http://dx.doi.org/10.1073/pnas.1218933110] [PMID: 23341635]
[81]
Bainbridge, J.W.B.; Mehat, M.S.; Sundaram, V.; Robbie, S.J.; Barker, S.E.; Ripamonti, C.; Georgiadis, A.; Mowat, F.M.; Beattie, S.G.; Gardner, P.J.; Feathers, K.L.; Luong, V.A.; Yzer, S.; Balaggan, K.; Viswanathan, A.; de Ravel, T.J.L.; Casteels, I.; Holder, G.E.; Tyler, N.; Fitzke, F.W.; Weleber, R.G.; Nardini, M.; Moore, A.T.; Thompson, D.A.; Petersen-Jones, S.M.; Michaelides, M.; van den Born, L.I.; Stockman, A.; Smith, A.J.; Rubin, G.; Ali, R.R. Long-term effect of gene therapy on Leber’s congenital amaurosis. N. Engl. J. Med., 2015, 372(20), 1887-1897.
[http://dx.doi.org/10.1056/NEJMoa1414221] [PMID: 25938638]
[82]
Simons, D.L.; Boye, S.L.; Hauswirth, W.W.; Wu, S.M. Gene therapy prevents photoreceptor death and preserves retinal function in a Bardet-Biedl syndrome mouse model. Proc. Natl. Acad. Sci. USA, 2011, 108(15), 6276-6281.
[http://dx.doi.org/10.1073/pnas.1019222108] [PMID: 21444805]
[83]
Seo, S.; Mullins, R.F.; Dumitrescu, A.V.; Bhattarai, S.; Gratie, D.; Wang, K.; Stone, E.M.; Sheffield, V.; Drack, A.V. Subretinal gene therapy of mice with Bardet-Biedl syndrome type 1. Invest. Ophthalmol. Vis. Sci., 2013, 54(9), 6118-6132.
[http://dx.doi.org/10.1167/iovs.13-11673] [PMID: 23900607]
[84]
Limberis, M.P.; Wilson, J.M. Adeno-associated virus serotype 9 vectors transduce murine alveolar and nasal epithelia and can be readministered. Proc. Natl. Acad. Sci. USA, 2006, 103(35), 12993-12998.
[http://dx.doi.org/10.1073/pnas.0601433103] [PMID: 16938846]
[85]
Limberis, M.P.; Vandenberghe, L.H.; Zhang, L.; Pickles, R.J.; Wilson, J.M. Transduction efficiencies of novel AAV vectors in mouse airway epithelium in vivo and human ciliated airway epithelium in vitro. Mol. Ther., 2009, 17(2), 294-301.
[http://dx.doi.org/10.1038/mt.2008.261] [PMID: 19066597]
[86]
Cao, L.; Schrank, B.R.; Rodriguez, S.; Benz, E.G.; Moulia, T.W.; Rickenbacher, G.T.; Gomez, A.C.; Levites, Y.; Edwards, S.R.; Golde, T.E.; Hyman, B.T.; Barnea, G.; Albers, M.W. Aβ alters the connectivity of olfactory neurons in the absence of amyloid plaques in vivo. Nat. Commun., 2012, 3, 1009.
[http://dx.doi.org/10.1038/ncomms2013] [PMID: 22910355]
[87]
Burnight, E.R.; Wiley, L.A.; Drack, A.V.; Braun, T.A.; Anfinson, K.R.; Kaalberg, E.E.; Halder, J.A.; Affatigato, L.M.; Mullins, R.F.; Stone, E.M.; Tucker, B.A. CEP290 gene transfer rescues Leber congenital amaurosis cellular phenotype. Gene Ther., 2014, 21(7), 662-672.
[http://dx.doi.org/10.1038/gt.2014.39] [PMID: 24807808]
[88]
Ostrowski, L.E.; Yin, W.; Patel, M.; Sechelski, J.; Rogers, T.; Burns, K.; Grubb, B.R.; Olsen, J.C. Restoring ciliary function to differentiated primary ciliary dyskinesia cells with a lentiviral vector. Gene Ther., 2014, 21(3), 253-261.
[http://dx.doi.org/10.1038/gt.2013.79] [PMID: 24451115]
[89]
Chhin, B.; Negre, D.; Merrot, O.; Pham, J.; Tourneur, Y.; Ressnikoff, D.; Jaspers, M.; Jorissen, M.; Cosset, F.L.; Bouvagnet, P. Ciliary beating recovery in deficient human airway epithelial cells after lentivirus ex vivo gene therapy. PLoS Genet., 2009, 5(3), e1000422.
[http://dx.doi.org/10.1371/journal.pgen.1000422] [PMID: 19300481]
[90]
Sinn, P.L.; Burnight, E.R.; Hickey, M.A.; Blissard, G.W.; McCray, P.B., Jr Persistent gene expression in mouse nasal epithelia following feline immunodeficiency virus-based vector gene transfer. J. Virol., 2005, 79(20), 12818-12827.
[http://dx.doi.org/10.1128/JVI.79.20.12818-12827.2005] [PMID: 16188984]
[91]
Chen, H.; Dadsetan, S.; Fomina, A.F.; Gong, Q. Expressing exogenous functional odorant receptors in cultured olfactory sensory neurons. Neural Dev., 2008, 3(1), 22.
[http://dx.doi.org/10.1186/1749-8104-3-22] [PMID: 18786248]
[92]
Sadrian, B.; Chen, H.; Gong, Q. Lentivirus-mediated genetic manipulation and visualization of olfactory sensory neurons in vivo. J. Vis. Exp., 2011, 51, 5-8.
[PMID: 21633336]
[93]
Sinn, P.L.; Arias, A.C.; Brogden, K.A.; McCray, P.B., Jr Lentivirus vector can be readministered to nasal epithelia without blocking immune responses. J. Virol., 2008, 82(21), 10684-10692.
[http://dx.doi.org/10.1128/JVI.00227-08] [PMID: 18768988]
[94]
Ranzani, M.; Cesana, D.; Bartholomae, C.C.; Sanvito, F.; Pala, M.; Benedicenti, F.; Gallina, P.; Sergi, L.S.; Merella, S.; Bulfone, A.; Doglioni, C.; von Kalle, C.; Kim, Y.J.; Schmidt, M.; Tonon, G.; Naldini, L.; Montini, E. Lentiviral vector-based insertional mutagenesis identifies genes associated with liver cancer. Nat. Methods, 2013, 10(2), 155-161.
[http://dx.doi.org/10.1038/nmeth.2331] [PMID: 23314173]
[95]
Papayannakos, C.; Daniel, R. Understanding lentiviral vector chromatin targeting: working to reduce insertional mutagenic potential for gene therapy. Gene Ther., 2013, 20(6), 581-588.
[http://dx.doi.org/10.1038/gt.2012.88] [PMID: 23171920]
[96]
Chakraborty, C.; Teoh, S.L.; Das, S. The smart programmable CRISPR technology: A next generation genome editing tool for investigators. Curr. Drug Targets, 2017, 18(14), 1653-1663.
[http://dx.doi.org/10.2174/1389450117666160527142321] [PMID: 27231109]
[97]
LaFountaine, J.S.; Fathe, K.; Smyth, H.D.C. Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9. Int. J. Pharm., 2015, 494(1), 180-194.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.029] [PMID: 26278489]
[98]
Lee, C.M.; Flynn, R.; Hollywood, J.A.; Scallan, M.F.; Harrison, P.T. Correction of the ΔF508 mutation in the cystic fibrosis transmembrane conductance regulator gene by zinc-finger nuclease homology-directed repair. Biores. Open Access, 2012, 1(3), 99-108.
[http://dx.doi.org/10.1089/biores.2012.0218]
[99]
Crane, A.M.; Kramer, P.; Bui, J.H.; Chung, W.J.; Li, X.S.; Gonzalez-Garay, M.L.; Hawkins, F.; Liao, W.; Mora, D.; Choi, S.; Wang, J.; Sun, H.C.; Paschon, D.E.; Guschin, D.Y.; Gregory, P.D.; Kotton, D.N.; Holmes, M.C.; Sorscher, E.J.; Davis, B.R. Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells. Stem Cell Reports, 2015, 4(4), 569-577.
[http://dx.doi.org/10.1016/j.stemcr.2015.02.005] [PMID: 25772471]
[100]
Lai, M.; Pifferi, M.; Bush, A.; Piras, M.; Michelucci, A.; Di Cicco, M.; del Grosso, A.; Quaranta, P.; Cursi, C.; Tantillo, E.; Franceschi, S.; Mazzanti, M.C.; Simi, P.; Saggese, G.; Boner, A.; Pistello, M. Gene editing of DNAH11 restores normal cilia motility in primary ciliary dyskinesia. J. Med. Genet., 2016, 53(4), 242-249.
[http://dx.doi.org/10.1136/jmedgenet-2015-103539] [PMID: 26729821]
[101]
Ruan, G.X.; Barry, E.; Yu, D.; Lukason, M.; Cheng, S.H.; Scaria, A. CRISPR/Cas9-mediated genome editing as a therapeutic approach for leber congenital amaurosis 10. Mol. Ther., 2017, 25(2), 331-341.
[http://dx.doi.org/10.1016/j.ymthe.2016.12.006] [PMID: 28109959]
[102]
Li, Y.; Zhang, J.; Chen, D.; Yang, P.; Jiang, F.; Wang, X.; Kang, L. CRISPR/Cas9 in locusts: Successful establishment of an olfactory deficiency line by targeting the mutagenesis of an odorant receptor co-receptor (Orco). Insect Biochem. Mol. Biol., 2016, 79, 27-35.
[http://dx.doi.org/10.1016/j.ibmb.2016.10.003] [PMID: 27744049]
[103]
Koutroumpa, F.A.; Monsempes, C.; François, M-C.; de Cian, A.; Royer, C.; Concordet, J-P.; Jacquin-Joly, E. Heritable genome editing with CRISPR/Cas9 induces anosmia in a crop pest moth. Sci. Rep., 2016, 6(1), 29620.
[http://dx.doi.org/10.1038/srep29620] [PMID: 27403935]
[104]
Trible, W.; Olivos-Cisneros, L.; McKenzie, S.K.; Saragosti, J.; Chang, N-C.; Matthews, B.J.; Oxley, P.R.; Kronauer, D.J.C. Orco mutagenesis causes loss of antennal lobe glomeruli and impaired social behavior in ants. Cell, 2017, 170(4), 727-735.e10.
[http://dx.doi.org/10.1016/j.cell.2017.07.001] [PMID: 28802042]
[105]
Yan, H.; Opachaloemphan, C.; Mancini, G.; Yang, H.; Gallitto, M.; Mlejnek, J.; Leibholz, A.; Haight, K.; Ghaninia, M.; Huo, L.; Perry, M.; Slone, J.; Zhou, X.; Traficante, M.; Penick, C.A.; Dolezal, K.; Gokhale, K.; Stevens, K.; Fetter-Pruneda, I.; Bonasio, R.; Zwiebel, L.J.; Berger, S.L.; Liebig, J.; Reinberg, D.; Desplan, C. An engineered orco mutation produces aberrant social behavior and defective neural development in ants. Cell, 2017, 170(4), 736-747.e9.
[http://dx.doi.org/10.1016/j.cell.2017.06.051] [PMID: 28802043]
[106]
Farbman, A.I. Olfactory neurogenesis: genetic or environmental controls? Trends Neurosci., 1990, 13(9), 362-365.
[http://dx.doi.org/10.1016/0166-2236(90)90017-5] [PMID: 1699323]
[107]
Mackay-Sim, A.; Kittel, P.W. On the life span of olfactory receptor neurons. Eur. J. Neurosci., 1991, 3(3), 209-215.
[http://dx.doi.org/10.1111/j.1460-9568.1991.tb00081.x] [PMID: 12106197]
[108]
Goldstein, B.J.; Fang, H.; Youngentob, S.L.; Schwob, J.E. Transplantation of multipotent progenitors from the adult olfactory epithelium. Neuroreport, 1998, 9(7), 1611-1617.
[http://dx.doi.org/10.1097/00001756-199805110-00065] [PMID: 9631475]
[109]
Chen, X.; Fang, H.; Schwob, J.E. Multipotency of purified, transplanted globose basal cells in olfactory epithelium. J. Comp. Neurol., 2004, 469(4), 457-474.
[http://dx.doi.org/10.1002/cne.11031] [PMID: 14755529]
[110]
Schnittke, N.; Herrick, D.B.; Lin, B.; Peterson, J.; Coleman, J.H.; Packard, A.I.; Jang, W.; Schwob, J.E. Transcription factor p63 controls the reserve status but not the stemness of horizontal basal cells in the olfactory epithelium. Proc. Natl. Acad. Sci. USA, 2015, 112(36), E5068-E5077.
[http://dx.doi.org/10.1073/pnas.1512272112] [PMID: 26305958]
[111]
Hummel, T.; Rissom, K.; Reden, J.; Hähner, A.; Weidenbecher, M.; Hüttenbrink, K-B. Effects of olfactory training in patients with olfactory loss. Laryngoscope, 2009, 119(3), 496-499.
[http://dx.doi.org/10.1002/lary.20101] [PMID: 19235739]
[112]
Jiang, R.S.; Twu, C.W.; Liang, K.L. The effect of olfactory training on the odor threshold in patients with traumatic anosmia. Am. J. Rhinol. Allergy, 2017, 31(5), 317-322.
[http://dx.doi.org/10.2500/ajra.2017.31.4466] [PMID: 28859708]
[113]
Damm, M.; Pikart, L.K.; Reimann, H.; Burkert, S.; Göktas, Ö.; Haxel, B.; Frey, S.; Charalampakis, I.; Beule, A.; Renner, B.; Hummel, T.; Hüttenbrink, K.B. Olfactory training is helpful in postinfectious olfactory loss: a randomized, controlled, multicenter study. Laryngoscope, 2014, 124(4), 826-831.
[http://dx.doi.org/10.1002/lary.24340] [PMID: 23929687]
[114]
Konstantinidis, I.; Tsakiropoulou, E.; Constantinidis, J. Long term effects of olfactory training in patients with post-infectious olfactory loss. Rhinology, 2016, 54(2), 170-175.
[http://dx.doi.org/10.4193/Rhin15.264] [PMID: 27017331]
[115]
Kollndorfer, K.; Kowalczyk, K.; Hoche, E.; Mueller, C.A.; Pollak, M.; Trattnig, S.; Schöpf, V. Recovery of olfactory function induces neuroplasticity effects in patients with smell loss. Neural Plast., 2014, 2014, 140419.
[http://dx.doi.org/10.1155/2014/140419] [PMID: 25544900]
[116]
Hida, K.; Lai, S.K.; Suk, J.S.; Won, S.Y.; Boyle, M.P.; Hanes, J. Common gene therapy viral vectors do not efficiently penetrate sputum from cystic fibrosis patients. PLoS One, 2011, 6(5), e19919.
[http://dx.doi.org/10.1371/journal.pone.0019919] [PMID: 21637751]
[117]
Kitson, C.; Angel, B.; Judd, D.; Rothery, S.; Severs, N.J. Dewar, a; Huang, L.; Wadsworth, S. C.; Cheng, S. H.; Geddes, D. M.; Alton, E. W. The extra- and intracellular barriers to lipid and adenovirus-mediated pulmonary gene transfer in native sheep airway epithelium. Gene Ther., 1999, 6(4), 534-546.
[http://dx.doi.org/10.1038/sj.gt.3300840] [PMID: 10476213]
[118]
Knowles, M.R.; Hohneker, K.W.; Zhou, Z.; Olsen, J.C.; Noah, T.L.; Hu, P.C.; Leigh, M.W.; Engelhardt, J.F.; Edwards, L.J.; Jones, K.R. A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis. N. Engl. J. Med., 1995, 333(13), 823-831.
[http://dx.doi.org/10.1056/NEJM199509283331302] [PMID: 7544439]
[119]
Novarino, G.; Akizu, N.; Gleeson, J.G. Modeling human disease in humans: the ciliopathies. Cell, 2011, 147(1), 70-79.
[http://dx.doi.org/10.1016/j.cell.2011.09.014] [PMID: 21962508]
[120]
Katsanis, N. Triallelic inheritance in Bardet-Biedl syndrome, a mendelian recessive Disorder. Science, 2001, 293(5538), 2256-2259.
[http://dx.doi.org/10.1126/science.1063525]
[121]
Katsanis, N.; Eichers, E.R.; Ansley, S.J.; Lewis, R.A.; Kayserili, H.; Hoskins, B.E.; Scambler, P.J.; Beales, P.L.; Lupski, J.R. BBS4 is a minor contributor to Bardet-Biedl syndrome and may also participate in triallelic inheritance. Am. J. Hum. Genet., 2002, 71(1), 22-29.
[http://dx.doi.org/10.1086/341031] [PMID: 12016587]
[122]
Joseph, P.M.; O’Sullivan, B.P.; Lapey, A.; Dorkin, H.; Oren, J.; Balfour, R.; Perricone, M.A.; Rosenberg, M.; Wadsworth, S.C.; Smith, A.E.; St George, J.A.; Meeker, D.P. Aerosol and lobar administration of a recombinant adenovirus to individuals with cystic fibrosis. I. Methods, safety, and clinical implications. Hum. Gene Ther., 2001, 12(11), 1369-1382.
[http://dx.doi.org/10.1089/104303401750298535] [PMID: 11485629]
[123]
Mingozzi, F.; High, K.A. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood, 2013, 122(1), 23-36.
[http://dx.doi.org/10.1182/blood-2013-01-306647] [PMID: 23596044]
[124]
Braun, J.J.; Noblet, V.; Durand, M.; Scheidecker, S.; Zinetti-Bertschy, A.; Foucher, J.; Marion, V.; Muller, J.; Riehm, S.; Dollfus, H.; Kremer, S. Olfaction evaluation and correlation with brain atrophy in Bardet-Biedl syndrome. Clin. Genet., 2014, 86(6), 521-529.
[http://dx.doi.org/10.1111/cge.12391] [PMID: 24684473]
[125]
Iannaccone, A.; Mykytyn, K.; Persico, A. M.; Searby, C. C.; Baldi, A.; Jablonski, M. M.; Sheffield, V. C. Clinical evidence of decreased olfaction in bardet-biedl syndrome caused by a deletion in the BBS4 gene. Am. J. Med. Genet., 2005, 132 A(4), 343-346.
[126]
Coppieters, F.; Lefever, S.; Leroy, B.P.; De Baere, E. CEP290, a gene with many faces: mutation overview and presentation of CEP290base. Hum. Mutat., 2010, 31(10), 1097-1108.
[http://dx.doi.org/10.1002/humu.21337] [PMID: 20690115]
[127]
Ahdab-Barmada, M.; Claassen, D. A distinctive triad of malformations of the central nervous system in the Meckel-Gruber syndrome. J. Neuropathol. Exp. Neurol., 1990, 49(6), 610-620.
[http://dx.doi.org/10.1097/00005072-199011000-00007] [PMID: 2230839]
[128]
Pluznick, J.L.; Rodriguez-Gil, D.J.; Hull, M.; Mistry, K.; Gattone, V.; Johnson, C.A.; Weatherbee, S.; Greer, C.A.; Caplan, M.J. Renal cystic disease proteins play critical roles in the organization of the olfactory epithelium. PLoS One, 2011, 6(5), e19694.
[http://dx.doi.org/10.1371/journal.pone.0019694] [PMID: 21614130]
[129]
Chang, B.; Khanna, H.; Hawes, N.; Jimeno, D.; He, S.; Lillo, C.; Parapuram, S.K.; Cheng, H.; Scott, A.; Hurd, R.E.; Sayer, J.A.; Otto, E.A.; Attanasio, M.; O’Toole, J.F.; Jin, G.; Shou, C.; Hildebrandt, F.; Williams, D.S.; Heckenlively, J.R.; Swaroop, A. In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum. Mol. Genet., 2006, 15(11), 1847-1857.
[http://dx.doi.org/10.1093/hmg/ddl107] [PMID: 16632484]
[130]
Caspary, T.; Larkins, C.E.; Anderson, K.V. The graded response to Sonic Hedgehog depends on cilia architecture. Dev. Cell, 2007, 12(5), 767-778.
[http://dx.doi.org/10.1016/j.devcel.2007.03.004] [PMID: 17488627]
[131]
Sun, Z.; Amsterdam, A.; Pazour, G.J.; Cole, D.G.; Miller, M.S.; Hopkins, N. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development, 2004, 131(16), 4085-4093.
[http://dx.doi.org/10.1242/dev.01240] [PMID: 15269167]
[132]
Gibberd, F.B.; Feher, M.D.; Sidey, M.C. Wierzbicki, a S. Smell testing: an additional tool for identification of adult refsum’s disease. J. Neurol. Neurosurg. Psychiatry, 2005, 2004(75), 1334-1336.
[133]
Wierzbicki, A.S.; Lloyd, M.D.; Schofield, C.J.; Feher, M.D.; Gibberd, F.B. Refsum’s disease: a peroxisomal disorder affecting phytanic acid α-oxidation. J. Neurochem., 2002, 80(5), 727-735.
[http://dx.doi.org/10.1046/j.0022-3042.2002.00766.x] [PMID: 11948235]
[134]
Abdel-Hak, B.; Gunkel, A.; Kanonier, G.; Schrott-Fischer, A.; Ulmer, H.; Thumfart, W. Ciliary beat frequency, olfaction and endoscopic sinus surgery. ORL J. Otorhinolaryngol. Relat. Spec., 1998, 60(4), 202-205.
[http://dx.doi.org/10.1159/000027594] [PMID: 9646307]
[135]
Papon, J.F.; Perrault, I.; Coste, A.; Louis, B.; Gérard, X.; Hanein, S.; Fares-Taie, L.; Gerber, S.; Defoort-Dhelle-mmes, S.; Vojtek, A.M.; Kaplan, J.; Rozet, J.M.; Escudier, E. Abnormal respiratory cilia in non-syndromic Leber congenital amaurosis with CEP290 mutations. J. Med. Genet., 2010, 47(12), 829-834.
[http://dx.doi.org/10.1136/jmg.2010.077883] [PMID: 20805370]
[136]
Lehman, A.M.; Eydoux, P.; Doherty, D.; Glass, I.A.; Chitayat, D.; Chung, B.Y.H.; Langlois, S.; Yong, S.L.; Lowry, R.B.; Hildebrandt, F.; Trnka, P. Co-occurrence of Joubert syndrome and Jeune asphyxiating thoracic dystrophy. Am. J. Med. Genet. A., 2010, 152A(6), 1411-1419.
[PMID: 20503315]
[137]
Maione, L.; Cantone, E.; Nettore, I.C.; Cerbone, G.; De Brasi, D.; Maione, N.; Young, J.; Di Somma, C.; Sinisi, A.A.; Iengo, M.; Macchia, P.E.; Pivonello, R.; Colao, A. Flavor perception test: evaluation in patients with Kallmann syndrome. Endocrine, 2016, 52(2), 236-243.
[http://dx.doi.org/10.1007/s12020-015-0690-y] [PMID: 26209039]
[138]
Koenigkam-Santos, M.; Santos, A.C.; Versiani, B.R.; Diniz, P.R.B.; Junior, J.E.; de Castro, M. Quantitative magnetic resonance imaging evaluation of the olfactory system in Kallmann syndrome: correlation with a clinical smell test. Neuroendocrinology, 2011, 94(3), 209-217.
[http://dx.doi.org/10.1159/000328437] [PMID: 21606642]
[139]
Dodé, C.; Rondard, P. PROK2/PROKR2 Signaling and Kallmann Syndrome. Front. Endocrinol. (Lausanne), 2013, 4, 19.
[http://dx.doi.org/10.3389/fendo.2013.00019] [PMID: 23596439]
[140]
Mitchell, A.L.; Dwyer, A.; Pitteloud, N.; Quinton, R. Genetic basis and variable phenotypic expression of Kallmann syndrome: towards a unifying theory. Trends Endocrinol. Metab., 2011, 22(7), 249-258.
[PMID: 21511493]
[141]
Bojesen, A.; Juul, S.; Gravholt, C.H. Prenatal and postnatal prevalence of Klinefelter syndrome: a national registry study. J. Clin. Endocrinol. Metab., 2003, 88(2), 622-626.
[http://dx.doi.org/10.1210/jc.2002-021491] [PMID: 12574191]
[142]
Lewkowitz-Shpuntoff, H.M.; Hughes, V.A.; Plummer, L.; Au, M.G.; Doty, R.L.; Seminara, S.B.; Chan, Y.M.; Pitteloud, N.; Crowley, W.F., Jr; Balasubramanian, R. Olfactory phenotypic spectrum in idiopathic hypogonadotropic hypogonadism: pathophysiological and genetic implications. J. Clin. Endocrinol. Metab., 2012, 97(1), E136-E144.
[http://dx.doi.org/10.1210/jc.2011-2041] [PMID: 22072740]
[143]
Vuorela, P.E.; Penttinen, M.T.; Hietala, M.H.; Laine, J.O.; Huoponen, K.A.; Kääriäinen, H.A. A familial CHARGE syndrome with a CHD7 nonsense mutation and new clinical features. Clin. Dysmorphol., 2008, 17(4), 249-253.
[http://dx.doi.org/10.1097/MCD.0b013e328306a704] [PMID: 18978652]
[144]
Jongmans, M.C.J.; van Ravenswaaij-Arts, C.M.A.; Pitteloud, N.; Ogata, T.; Sato, N.; Claahsen-van der Grinten, H.L.; van der Donk, K.; Seminara, S.; Bergman, J.E.H.; Brunner, H.G.; Crowley, W.F., Jr; Hoefsloot, L.H. CHD7 mutations in patients initially diagnosed with Kallmann syndrome--the clinical overlap with CHARGE syndrome. Clin. Genet., 2009, 75(1), 65-71.
[http://dx.doi.org/10.1111/j.1399-0004.2008.01107.x] [PMID: 19021638]
[145]
Jansen, F.; Kalbe, B.; Scholz, P.; Mikosz, M.; Wunderlich, K.A.; Kurtenbach, S.; Nagel-Wolfrum, K.; Wolfrum, U.; Hatt, H.; Osterloh, S. Impact of the Usher syndrome on olfaction. Hum. Mol. Genet., 2016, 25(3), 524-533.
[http://dx.doi.org/10.1093/hmg/ddv490] [PMID: 26620972]
[146]
Seeliger, M.; Pfister, M.; Gendo, K.; Paasch, S.; Apfelstedt-Sylla, E.; Plinkert, P.; Zenner, H-P.; Zrenner, E. Comparative study of visual, auditory, and olfactory function in Usher syndrome. Graefes Arch. Clin. Exp. Ophthalmol., 1999, 237(4), 301-307.
[http://dx.doi.org/10.1007/s004170050237] [PMID: 10208263]
[147]
Ribeiro, J.C.; Oliveiros, B.; Pereira, P.; António, N.; Hummel, T.; Paiva, A.; Silva, E.D. Accelerated age-related olfactory decline among type 1 Usher patients. Sci. Rep., 2016, 6(1), 28309.
[http://dx.doi.org/10.1038/srep28309] [PMID: 27329700]
[148]
Marietta, J.; Walters, K.S.; Burgess, R.; Ni, L.; Fukushima, K.; Moore, K.C.; Hejtmancik, J.F.; Smith, R.J.H. Usher’s syndrome type IC: clinical studies and fine-mapping the disease locus. Ann. Otol. Rhinol. Laryngol., 1997, 106(2), 123-128.
[http://dx.doi.org/10.1177/000348949710600206] [PMID: 9041816]
[149]
Reiners, J.; Nagel-Wolfrum, K.; Jürgens, K.; Märker, T.; Wolfrum, U. Molecular basis of human Usher syndrome: deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease. Exp. Eye Res., 2006, 83(1), 97-119.
[http://dx.doi.org/10.1016/j.exer.2005.11.010] [PMID: 16545802]
[150]
Endoh-Yamagami, S.; Karkar, K.M.; May, S.R.; Cobos, I.; Thwin, M.T.; Long, J.E.; Ashique, A.M.; Zarbalis, K.; Rubenstein, J.L.R.; Peterson, A.S. A mutation in the pericentrin gene causes abnormal interneuron migration to the olfactory bulb in mice. Dev. Biol., 2010, 340(1), 41-53.
[http://dx.doi.org/10.1016/j.ydbio.2010.01.017] [PMID: 20096683]
[151]
Hori, A.; Tamagawa, K.; Eber, S.W.; Westmeier, M.; Hansmann, I. Neuropathology of Seckel syndrome in fetal stage with evidence of intrauterine developmental retardation. Acta Neuropathol., 1987, 74(4), 397-401.
[http://dx.doi.org/10.1007/BF00687219] [PMID: 3687392]
[152]
Brasseur, B.; Martin, C. M.; Cayci, Z.; Burmeister, L.; Schimmenti, L. A. Bosma arhinia microphthalmia syndrome: Clinical report and review of the literature. Am. J. Med. Genet. Part A ., 2016, 170(5)
[153]
Graham, J. M.; Lee, J. Bosma arhinia microphthalmia syndrome. Am. J. Med. Genet., 2006, 140 A(2), 189-193.
[http://dx.doi.org/10.1002/ajmg.a.31039]
[154]
Lahiry, P.; Wang, J.; Robinson, J.F.; Turowec, J.P.; Litchfield, D.W.; Lanktree, M.B.; Gloor, G.B.; Puffenberger, E.G.; Strauss, K.A.; Martens, M.B.; Ramsay, D.A.; Rupar, C.A.; Siu, V.; Hegele, R.A. A multiplex human syndrome implicates a key role for intestinal cell kinase in development of central nervous, skeletal, and endocrine systems. Am. J. Hum. Genet., 2009, 84(2), 134-147.
[http://dx.doi.org/10.1016/j.ajhg.2008.12.017] [PMID: 19185282]
[155]
Moerman, P.; Fryns, J.P. Oral-facial-digital syndrome type IV (Mohr-Majewski syndrome): a fetopathological study. Genet. Couns., 1998, 9(1), 39-43.
[PMID: 9555586]
[156]
Thomas, S.; Legendre, M.; Saunier, S.; Bessières, B.; Alby, C.; Bonnière, M.; Toutain, A.; Loeuillet, L.; Szymanska, K.; Jossic, F.; Gaillard, D.; Yacoubi, M.T.; Mougou-Zerelli, S.; David, A.; Barthez, M.A.; Ville, Y.; Bole-Feysot, C.; Nitschke, P.; Lyonnet, S.; Munnich, A.; Johnson, C.A.; Encha-Razavi, F.; Cormier-Daire, V.; Thauvin-Robinet, C.; Vekemans, M.; Attié-Bitach, T. TCTN3 mutations cause Mohr-Majewski syndrome. Am. J. Hum. Genet., 2012, 91(2), 372-378.
[http://dx.doi.org/10.1016/j.ajhg.2012.06.017] [PMID: 22883145]
[157]
Spranger, J.; Grimm, B.; Weller, M.; Weissenbacher, G.; Herrmann, J.; Gilbert, E.; Krepler, R. Short rib-polydactyly (SRP) syndromes, types Majewski and Saldino-Noonan. Z. Kinderheilkd., 1974, 116(2), 73-94.
[http://dx.doi.org/10.1007/BF00491508] [PMID: 4816160]
[158]
Sailani, M.R.; Jingga, I. MirMazlomi, S.H.; Bitarafan, F.; Bernstein, J.A.; Snyder, M.P.; Garshasbi, M. Isolated congenital anosmia and CNGA2 mutation. Sci. Rep., 2017, 7(1), 2667.
[http://dx.doi.org/10.1038/s41598-017-02947-y] [PMID: 28572688]
[159]
Karstensen, H.G.; Mang, Y.; Fark, T.; Hummel, T.; Tommerup, N. The first mutation in CNGA2 in two brothers with anosmia. Clin. Genet., 2015, 88(3), 293-296.
[http://dx.doi.org/10.1111/cge.12491] [PMID: 25156905]
[160]
Alkelai, A.; Olender, T.; Haffner-Krausz, R.; Tsoory, M.M.; Boyko, V.; Tatarskyy, P.; Gross-Isseroff, R.; Milgrom, R.; Shushan, S.; Blau, I.; Cohn, E.; Beeri, R.; Levy-Lahad, E.; Pras, E.; Lancet, D. A role for TENM1 mutations in congenital general anosmia. Clin. Genet., 2016, 90(3), 211-219.
[http://dx.doi.org/10.1111/cge.12782] [PMID: 27040985]
[161]
Weiss, J.; Pyrski, M.; Jacobi, E.; Bufe, B.; Willnecker, V.; Schick, B.; Zizzari, P.; Gossage, S.J.; Greer, C.A.; Leinders-Zufall, T.; Woods, C.G.; Wood, J.N.; Zufall, F. Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature, 2011, 472(7342), 186-190.
[http://dx.doi.org/10.1038/nature09975] [PMID: 21441906]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy