摘要
大量研究集中在研究与2型糖尿病风险或诊断相关的血清生物标志物上。 在过去的十年中,有前途的研究表明,循环水平的脂肪因子可以用作糖尿病进展以及未来治疗目标的相关生物标志物。 在这里,我们讨论了可能的使用最近描述的脂肪因子,包括apelin,omentin-1,resistin,FGF-21,neuregulin-4和visfatin作为糖尿病的早期生物标记。 此外,我们还包括其他众所周知的脂肪因子(如瘦素和脂联素)的最新发现。 总之,需要进一步的研究来阐明这些生物学因素作为2型糖尿病及其相关功能障碍的潜在生物标志物的病理生理学意义和临床价值。
关键词: 脂肪因子,糖尿病,2型糖尿病,胰岛素抵抗,肥胖症,葡萄糖代谢。
[1]
Balakumar, P.; Maung, U.K.; Jagadeesh, G. Prevalence and
prevention of cardiovascular disease and diabetes mellitus Pharmacol Res, 2016, 113(Pt A), 600-609.
[http://dx.doi.org/10.1016/j.phrs.2016.09.040]
[http://dx.doi.org/10.1016/j.phrs.2016.09.040]
[2]
Holman, N.; Forouhi, N.G.; Goyder, E.; Wild, S.H. The Association of Public Health Observatories (APHO) diabetes prevalence model: estimates of total diabetes prevalence for England, 2010-2030. Diabet. Med., 2011, 28(5), 575-582.
[http://dx.doi.org/10.1111/j.1464-5491.2010.03216.x] [PMID: 21480968]
[http://dx.doi.org/10.1111/j.1464-5491.2010.03216.x] [PMID: 21480968]
[3]
Kuźbicka, K.; Rachoń, D. Bad eating habits as the main cause of obesity among children. Pediatr. Endocrinol. Diabetes Metab., 2013, 19(3), 106-110.
[PMID: 25577898]
[PMID: 25577898]
[4]
Crino, M.; Sacks, G.; Vandevijvere, S.; Swinburn, B.; Neal, B. The influence on population weight gain and obesity of the macronutrient composition and energy density of the food supply. Curr. Obes. Rep., 2015, 4(1), 1-10.
[http://dx.doi.org/10.1007/s13679-014-0134-7] [PMID: 26627085]
[http://dx.doi.org/10.1007/s13679-014-0134-7] [PMID: 26627085]
[5]
Liou, Y.M.; Yang, Y.L.; Wang, T.Y.; Huang, C.M. School lunch, policy, and environment are determinants for preventing childhood obesity: Evidence from a two-year nationwide prospective study. Obes. Res. Clin. Pract., 2015, 9(6), 563-572.
[http://dx.doi.org/10.1016/j.orcp.2015.02.012] [PMID: 25900800]
[http://dx.doi.org/10.1016/j.orcp.2015.02.012] [PMID: 25900800]
[6]
Esposito, K.; Kastorini, C.M.; Panagiotakos, D.B.; Giugliano, D. Prevention of type 2 diabetes by dietary patterns: a systematic review of prospective studies and meta-analysis. Metab. Syndr. Relat. Disord., 2010, 8(6), 471-476.
[http://dx.doi.org/10.1089/met.2010.0009] [PMID: 20958207]
[http://dx.doi.org/10.1089/met.2010.0009] [PMID: 20958207]
[7]
Imamura, F.; O’Connor, L.; Ye, Z.; Mursu, J.; Hayashino, Y.; Bhupathiraju, S.N.; Forouhi, N.G. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. Br. J. Sports Med., 2016, 50(8), 496-504.
[http://dx.doi.org/10.1136/bjsports-2016-h3576rep] [PMID: 27044603]
[http://dx.doi.org/10.1136/bjsports-2016-h3576rep] [PMID: 27044603]
[8]
Jaruratanasirikul, S.; Thammaratchuchai, S.; Puwanant, M.; Mo-Suwan, L.; Sriplung, H. Progression from impaired glucose tolerance to type 2 diabetes in obese children and adolescents: a 3-6-year cohort study in southern Thailand. J. Pediatr. Endocrinol. Metab., 2016, 29(11), 1267-1275.
[http://dx.doi.org/10.1515/jpem-2016-0195] [PMID: 27740930]
[http://dx.doi.org/10.1515/jpem-2016-0195] [PMID: 27740930]
[9]
Meijnikman, A.S.; De Block, C.E.; Verrijken, A.; Mertens, I.; Corthouts, B.; Van Gaal, L.F. Screening for type 2 diabetes mellitus in overweight and obese subjects made easy by the FINDRISC score. J. Diabetes Complications, 2016, 30(6), 1043-1049.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.05.004] [PMID: 27217020]
[http://dx.doi.org/10.1016/j.jdiacomp.2016.05.004] [PMID: 27217020]
[10]
Motamed, N.; Rabiee, B.; Keyvani, H.; Hemasi, G.R.; Khonsari, M.; Saeedian, F.S.; Maadi, M.; Zamani, F. The best obesity indices to discriminate type 2 diabetes mellitus. Metab. Syndr. Relat. Disord., 2016, 14(5), 249-253.
[http://dx.doi.org/10.1089/met.2015.0133] [PMID: 27058358]
[http://dx.doi.org/10.1089/met.2015.0133] [PMID: 27058358]
[11]
Madsbad, S.; Dirksen, C.; Holst, J.J. Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery. Lancet Diabetes Endocrinol., 2014, 2(2), 152-164.
[http://dx.doi.org/10.1016/S2213-8587(13)70218-3] [PMID: 24622719]
[http://dx.doi.org/10.1016/S2213-8587(13)70218-3] [PMID: 24622719]
[12]
Mingrone, G.; Cummings, D.E. Changes of insulin sensitivity and secretion after bariatric/metabolic surgery. Surg. Obes. Relat. Dis., 2016, 12(6), 1199-1205.
[http://dx.doi.org/10.1016/j.soard.2016.05.013] [PMID: 27568471]
[http://dx.doi.org/10.1016/j.soard.2016.05.013] [PMID: 27568471]
[13]
Panunzi, S.; Carlsson, L.; De Gaetano, A.; Peltonen, M.; Rice, T.; Sjöström, L.; Mingrone, G.; Dixon, J.B. Determinants of diabetes remission and glycemic control after bariatric surgery. Diabetes Care, 2016, 39(1), 166-174.
[http://dx.doi.org/10.2337/dc15-0575] [PMID: 26628418]
[http://dx.doi.org/10.2337/dc15-0575] [PMID: 26628418]
[14]
de Carvalho, C.P.; Marin, D.M.; de Souza, A.L.; Pareja, J.C.; Chaim, E.A.; de Barros Mazon, S.; da Silva, C.A.; Geloneze, B.; Muscelli, E.; Alegre, S.M. GLP-1 and adiponectin: effect of weight loss after dietary restriction and gastric bypass in morbidly obese patients with normal and abnormal glucose metabolism. Obes. Surg., 2009, 19(3), 313-320.
[http://dx.doi.org/10.1007/s11695-008-9678-5] [PMID: 18815849]
[http://dx.doi.org/10.1007/s11695-008-9678-5] [PMID: 18815849]
[15]
Fasshauer, M.; Blüher, M. Adipokines in health and disease. Trends Pharmacol. Sci., 2015, 36(7), 461-470.
[http://dx.doi.org/10.1016/j.tips.2015.04.014] [PMID: 26022934]
[http://dx.doi.org/10.1016/j.tips.2015.04.014] [PMID: 26022934]
[16]
Dunmore, S.J.; Brown, J.E. The role of adipokines in β-cell failure of type 2 diabetes. J. Endocrinol., 2013, 216(1), T37-T45.
[http://dx.doi.org/10.1530/JOE-12-0278] [PMID: 22991412]
[http://dx.doi.org/10.1530/JOE-12-0278] [PMID: 22991412]
[17]
Kwon, H.; Pessin, J.E. Adipokines mediate inflammation and insulin resistance. Front. Endocrinol. (Lausanne), 2013, 4, 71.
[http://dx.doi.org/10.3389/fendo.2013.00071] [PMID: 23781214]
[http://dx.doi.org/10.3389/fendo.2013.00071] [PMID: 23781214]
[18]
Julia, C.; Czernichow, S.; Charnaux, N.; Ahluwalia, N.; Andreeva, V.; Touvier, M.; Galan, P.; Fezeu, L. Relationships between adipokines, biomarkers of endothelial function and inflammation and risk of type 2 diabetes. Diabetes Res. Clin. Pract., 2014, 105(2), 231-238.
[http://dx.doi.org/10.1016/j.diabres.2014.05.001] [PMID: 24931702]
[http://dx.doi.org/10.1016/j.diabres.2014.05.001] [PMID: 24931702]
[19]
Blüher, M. Clinical relevance of adipokines. Diabetes Metab. J., 2012, 36(5), 317-327.
[http://dx.doi.org/10.4093/dmj.2012.36.5.317] [PMID: 23130315]
[http://dx.doi.org/10.4093/dmj.2012.36.5.317] [PMID: 23130315]
[20]
Adolph, T.E.; Grander, C.; Grabherr, F.; Tilg, H. Adipokines and non-alcoholic fatty liver disease: multiple interactions. Int. J. Mol. Sci., 2017, 18(8)E1649
[http://dx.doi.org/10.3390/ijms18081649] [PMID: 28758929]
[http://dx.doi.org/10.3390/ijms18081649] [PMID: 28758929]
[21]
Fisman, E.Z.; Tenenbaum, A. Adiponectin: a manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovasc. Diabetol., 2014, 13, 103.
[http://dx.doi.org/10.1186/1475-2840-13-103] [PMID: 24957699]
[http://dx.doi.org/10.1186/1475-2840-13-103] [PMID: 24957699]
[22]
Blüher, M. Adipose tissue dysfunction contributes to obesity related metabolic diseases. Best Pract. Res. Clin. Endocrinol. Metab., 2013, 27(2), 163-177.
[http://dx.doi.org/10.1016/j.beem.2013.02.005] [PMID: 23731879]
[http://dx.doi.org/10.1016/j.beem.2013.02.005] [PMID: 23731879]
[23]
Freitas Lima, L.C.; Braga, V.A.; do Socorro de França Silva, M.; Cruz, J.C.; Sousa Santos, S.H.; de Oliveira Monteiro, M.M.; Balarini, C.M. Adipokines, diabetes and atherosclerosis: an inflammatory association. Front. Physiol., 2015, 6, 304.
[http://dx.doi.org/10.3389/fphys.2015.00304] [PMID: 26578976]
[http://dx.doi.org/10.3389/fphys.2015.00304] [PMID: 26578976]
[24]
Van de Voorde, J.; Pauwels, B.; Boydens, C.; Decaluwé, K. Adipocytokines in relation to cardiovascular disease. Metabolism, 2013, 62(11), 1513-1521.
[http://dx.doi.org/10.1016/j.metabol.2013.06.004] [PMID: 23866981]
[http://dx.doi.org/10.1016/j.metabol.2013.06.004] [PMID: 23866981]
[25]
Alves, M.G.; Jesus, T.T.; Sousa, M.; Goldberg, E.; Silva, B.M.; Oliveira, P.F. Male fertility and obesity: are ghrelin, leptin and glucagon-like peptide-1 pharmacologically relevant? Curr. Pharm. Des., 2016, 22(7), 783-791.
[http://dx.doi.org/10.2174/1381612822666151209151550] [PMID: 26648473]
[http://dx.doi.org/10.2174/1381612822666151209151550] [PMID: 26648473]
[26]
Farr, O.M.; Tsoukas, M.A.; Triantafyllou, G.; Dincer, F.; Filippaios, A.; Ko, B.J.; Mantzoros, C.S. Short-term administration of the GLP-1 analog liraglutide decreases circulating leptin and increases GIP levels and these changes are associated with alterations in CNS responses to food cues: A randomized, placebo-controlled, crossover study. Metabolism, 2016, 65(7), 945-953.
[http://dx.doi.org/10.1016/j.metabol.2016.03.009] [PMID: 27282865]
[http://dx.doi.org/10.1016/j.metabol.2016.03.009] [PMID: 27282865]
[27]
Li, D.; Xu, X.; Zhang, Y.; Zhu, J.; Ye, L.; Lee, K.O.; Ma, J. Liraglutide treatment causes upregulation of adiponectin and downregulation of resistin in Chinese type 2 diabetes. Diabetes Res. Clin. Pract., 2015, 110(2), 224-228.
[http://dx.doi.org/10.1016/j.diabres.2015.05.051] [PMID: 26376464]
[http://dx.doi.org/10.1016/j.diabres.2015.05.051] [PMID: 26376464]
[28]
Díaz-Soto, G.; de Luis, D.A.; Conde-Vicente, R.; Izaola-Jauregui, O.; Ramos, C.; Romero, E. Beneficial effects of liraglutide on adipocytokines, insulin sensitivity parameters and cardiovascular risk biomarkers in patients with Type 2 diabetes: a prospective study. Diabetes Res. Clin. Pract., 2014, 104(1), 92-96.
[http://dx.doi.org/10.1016/j.diabres.2014.01.019] [PMID: 24530118]
[http://dx.doi.org/10.1016/j.diabres.2014.01.019] [PMID: 24530118]
[29]
Yan, P.; Li, L.; Yang, M.; Liu, D.; Liu, H.; Boden, G.; Yang, G. Effects of the long-acting human glucagon-like peptide-1 analog liraglutide on plasma omentin-1 levels in patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract., 2011, 92(3), 368-374.
[http://dx.doi.org/10.1016/j.diabres.2011.02.030] [PMID: 21458097]
[http://dx.doi.org/10.1016/j.diabres.2011.02.030] [PMID: 21458097]
[30]
Pastel, E.; Joshi, S.; Knight, B.; Liversedge, N.; Ward, R.; Kos, K. Effects of Exendin-4 on human adipose tissue inflammation and ECM remodelling. Nutr. Diabetes, 2016, 6(12)e235
[http://dx.doi.org/10.1038/nutd.2016.44] [PMID: 27941938]
[http://dx.doi.org/10.1038/nutd.2016.44] [PMID: 27941938]
[31]
Wang, A.; Li, T.; An, P.; Yan, W.; Zheng, H.; Wang, B.; Mu, Y. Exendin-4 upregulates adiponectin level in adipocytes via Sirt1/Foxo-1 signaling pathway. PLoS One, 2017, 12(1)e0169469
[http://dx.doi.org/10.1371/journal.pone.0169469] [PMID: 28122026]
[http://dx.doi.org/10.1371/journal.pone.0169469] [PMID: 28122026]
[32]
Tatemoto, K.; Hosoya, M.; Habata, Y.; Fujii, R.; Kakegawa, T.; Zou, M.X.; Kawamata, Y.; Fukusumi, S.; Hinuma, S.; Kitada, C.; Kurokawa, T.; Onda, H.; Fujino, M. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem. Biophys. Res. Commun., 1998, 251(2), 471-476.
[http://dx.doi.org/10.1006/bbrc.1998.9489] [PMID: 9792798]
[http://dx.doi.org/10.1006/bbrc.1998.9489] [PMID: 9792798]
[33]
Boucher, J.; Masri, B.; Daviaud, D.; Gesta, S.; Guigné, C.; Mazzucotelli, A.; Castan-Laurell, I.; Tack, I.; Knibiehler, B.; Carpéné, C.; Audigier, Y.; Saulnier-Blache, J.S.; Valet, P. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology, 2005, 146(4), 1764-1771.
[http://dx.doi.org/10.1210/en.2004-1427] [PMID: 15677759]
[http://dx.doi.org/10.1210/en.2004-1427] [PMID: 15677759]
[34]
O’Dowd, B.F.; Heiber, M.; Chan, A.; Heng, H.H.; Tsui, L.C.; Kennedy, J.L.; Shi, X.; Petronis, A.; George, S.R.; Nguyen, T. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene, 1993, 136(1-2), 355-360.
[http://dx.doi.org/10.1016/0378-1119(93)90495-O] [PMID: 8294032]
[http://dx.doi.org/10.1016/0378-1119(93)90495-O] [PMID: 8294032]
[35]
Chaves-Almagro, C.; Castan-Laurell, I.; Dray, C.; Knauf, C.; Valet, P.; Masri, B. Apelin receptors: From signaling to
antidiabetic strategy. Eur. J. Pharmacol, 2015, 763(Pt B), 149-159.
[36]
Castan-Laurell, I.; Dray, C.; Knauf, C.; Kunduzova, O.; Valet, P. Apelin, a promising target for type 2 diabetes treatment? Trends Endocrinol. Metab., 2012, 23(5), 234-241.
[http://dx.doi.org/10.1016/j.tem.2012.02.005] [PMID: 22445464]
[http://dx.doi.org/10.1016/j.tem.2012.02.005] [PMID: 22445464]
[37]
Masri, B.; Lahlou, H.; Mazarguil, H.; Knibiehler, B.; Audigier, Y. Apelin (65-77) activates extracellular signal-regulated kinases via a PTX-sensitive G protein. Biochem. Biophys. Res. Commun., 2002, 290(1), 539-545.
[http://dx.doi.org/10.1006/bbrc.2001.6230] [PMID: 11779205]
[http://dx.doi.org/10.1006/bbrc.2001.6230] [PMID: 11779205]
[38]
Masri, B.; Morin, N.; Cornu, M.; Knibiehler, B.; Audigier, Y. Apelin (65-77) activates p70 S6 kinase and is mitogenic for umbilical endothelial cells. FASEB J., 2004, 18(15), 1909-1911.
[http://dx.doi.org/10.1096/fj.04-1930fje] [PMID: 15385434]
[http://dx.doi.org/10.1096/fj.04-1930fje] [PMID: 15385434]
[39]
Gu, Q.; Zhai, L.; Feng, X.; Chen, J.; Miao, Z.; Ren, L.; Qian, X.; Yu, J.; Li, Y.; Xu, X.; Liu, C.F. Apelin-36, a potent peptide, protects against ischemic brain injury by activating the PI3K/Akt pathway. Neurochem. Int., 2013, 63(6), 535-540.
[http://dx.doi.org/10.1016/j.neuint.2013.09.017] [PMID: 24083989]
[http://dx.doi.org/10.1016/j.neuint.2013.09.017] [PMID: 24083989]
[40]
Dray, C.; Knauf, C.; Daviaud, D.; Waget, A.; Boucher, J.; Buléon, M.; Cani, P.D.; Attané, C.; Guigné, C.; Carpéné, C.; Burcelin, R.; Castan-Laurell, I.; Valet, P. Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metab., 2008, 8(5), 437-445.
[http://dx.doi.org/10.1016/j.cmet.2008.10.003] [PMID: 19046574]
[http://dx.doi.org/10.1016/j.cmet.2008.10.003] [PMID: 19046574]
[41]
Adam, F.; Khatib, A.M.; Javier Lopez, J.; Vatier, C.; Turpin, S.; Muscat, A.; Soulet, F.; Aries, A.; Jardin, I.; Bobe, R.; Stepanian, A.; De Prost, D.; Dray, C.; Rosado, J.; Valet, P.; Feve, B.; Siegfried, G. Apelin acts as an antithrombotic factor by inhibiting platelet functions. Blood, 2015.
[42]
Habata, Y.; Fujii, R.; Hosoya, M.; Fukusumi, S.; Kawamata, Y.; Hinuma, S.; Kitada, C.; Nishizawa, N.; Murosaki, S.; Kurokawa, T.; Onda, H.; Tatemoto, K.; Fujino, M. Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum. Biochim. Biophys. Acta, 1999, 1452(1), 25-35.
[http://dx.doi.org/10.1016/S0167-4889(99)00114-7] [PMID: 10525157]
[http://dx.doi.org/10.1016/S0167-4889(99)00114-7] [PMID: 10525157]
[43]
Wang, G.; Anini, Y.; Wei, W.; Qi, X. OCarroll, A.M.; Mochizuki, T.; Wang, H.Q.; Hellmich, M.R.; Englander, E.W.; Greeley, G.H. Jr. Apelin, a new enteric peptide: localization in the gastrointestinal tract, ontogeny, and stimulation of gastric cell proliferation and of cholecystokinin secretion. Endocrinology, 2004, 145(3), 1342-1348.
[http://dx.doi.org/10.1210/en.2003-1116] [PMID: 14670994]
[http://dx.doi.org/10.1210/en.2003-1116] [PMID: 14670994]
[44]
Lv, S.Y.; Yang, Y.J.; Chen, Q. Regulation of feeding behavior, gastrointestinal function and fluid homeostasis by apelin. Peptides, 2013, 44, 87-92.
[http://dx.doi.org/10.1016/j.peptides.2013.03.024] [PMID: 23557907]
[http://dx.doi.org/10.1016/j.peptides.2013.03.024] [PMID: 23557907]
[45]
Galanth, C.; Hus-Citharel, A.; Li, B.; Llorens-Cortès, C. Apelin in the control of body fluid homeostasis and cardiovascular functions. Curr. Pharm. Des., 2012, 18(6), 789-798.
[http://dx.doi.org/10.2174/138161212799277770] [PMID: 22236125]
[http://dx.doi.org/10.2174/138161212799277770] [PMID: 22236125]
[46]
Charo, D.N.; Ho, M.; Fajardo, G.; Kawana, M.; Kundu, R.K.; Sheikh, A.Y.; Finsterbach, T.P.; Leeper, N.J.; Ernst, K.V.; Chen, M.M.; Ho, Y.D.; Chun, H.J.; Bernstein, D.; Ashley, E.A.; Quertermous, T. Endogenous regulation of cardiovascular function by apelin-APJ. Am. J. Physiol. Heart Circ. Physiol., 2009, 297(5), H1904-H1913.
[http://dx.doi.org/10.1152/ajpheart.00686.2009] [PMID: 19767528]
[http://dx.doi.org/10.1152/ajpheart.00686.2009] [PMID: 19767528]
[47]
Sorli, S.C.; Le Gonidec, S.; Knibiehler, B.; Audigier, Y. Apelin is a potent activator of tumour neoangiogenesis. Oncogene, 2007, 26(55), 7692-7699.
[http://dx.doi.org/10.1038/sj.onc.1210573] [PMID: 17563744]
[http://dx.doi.org/10.1038/sj.onc.1210573] [PMID: 17563744]
[48]
Kasai, A.; Kinjo, T.; Ishihara, R.; Sakai, I.; Ishimaru, Y.; Yoshioka, Y.; Yamamuro, A.; Ishige, K.; Ito, Y.; Maeda, S. Apelin deficiency accelerates the progression of amyotrophic lateral sclerosis. PLoS One, 2011, 6(8)e23968
[http://dx.doi.org/10.1371/journal.pone.0023968] [PMID: 21887354]
[http://dx.doi.org/10.1371/journal.pone.0023968] [PMID: 21887354]
[49]
Lv, D.; Li, H.; Chen, L. Apelin and APJ, a novel critical factor and therapeutic target for atherosclerosis. Acta Biochim. Biophys. Sin. (Shanghai), 2013, 45(7), 527-533.
[http://dx.doi.org/10.1093/abbs/gmt040] [PMID: 23588025]
[http://dx.doi.org/10.1093/abbs/gmt040] [PMID: 23588025]
[50]
Wu, D.; He, L.; Chen, L. Apelin/APJ system: a promising therapy target for hypertension. Mol. Biol. Rep., 2014, 41(10), 6691-6703.
[http://dx.doi.org/10.1007/s11033-014-3552-4] [PMID: 24990699]
[http://dx.doi.org/10.1007/s11033-014-3552-4] [PMID: 24990699]
[51]
He, L.; Xu, J.; Chen, L.; Li, L. Apelin/APJ signaling in
hypoxia-related diseases Clin Chim Acta, 2015, 451(Pt B), 191-198.
[52]
Masri, B.; van den Berghe, L.; Sorli, C.; Knibiehler, B.; Audigier, Y. Apelin signalisation and vascular physiopathology. J. Soc. Biol., 2009, 203(2), 171-179.
[http://dx.doi.org/10.1051/jbio/2009021] [PMID: 19527631]
[http://dx.doi.org/10.1051/jbio/2009021] [PMID: 19527631]
[53]
Lu, L.; Wu, D.; Li, L.; Chen, L. Apelin/APJ system: A bifunctional target for cardiac hypertrophy. Int. J. Cardiol., 2017, 230, 164-170.
[http://dx.doi.org/10.1016/j.ijcard.2016.11.215] [PMID: 27979574]
[http://dx.doi.org/10.1016/j.ijcard.2016.11.215] [PMID: 27979574]
[54]
Urwyler, S.A.; Timper, K.; Fenske, W.; de Mota, N.; Blanchard, A.; Kühn, F.; Frech, N.; Arici, B.; Rutishauser, J.; Kopp, P.; Stettler, C.; Müller, B.; Katan, M.; Llorens-Cortes, C.; Christ-Crain, M. Plasma apelin concentrations in patients with polyuria-polydipsia syndrome. J. Clin. Endocrinol. Metab., 2016, 101(5), 1917-1923.
[http://dx.doi.org/10.1210/jc.2016-1158] [PMID: 26967692]
[http://dx.doi.org/10.1210/jc.2016-1158] [PMID: 26967692]
[55]
Zou, M.X.; Liu, H.Y.; Haraguchi, Y.; Soda, Y.; Tatemoto, K.; Hoshino, H. Apelin peptides block the entry of human immunodeficiency virus (HIV). FEBS Lett., 2000, 473(1), 15-18.
[http://dx.doi.org/10.1016/S0014-5793(00)01487-3] [PMID: 10802050]
[http://dx.doi.org/10.1016/S0014-5793(00)01487-3] [PMID: 10802050]
[56]
Zhu, S.; Sun, F.; Li, W.; Cao, Y.; Wang, C.; Wang, Y.; Liang, D.; Zhang, R.; Zhang, S.; Wang, H.; Cao, F. Apelin stimulates glucose uptake through the PI3K/Akt pathway and improves insulin resistance in 3T3-L1 adipocytes. Mol. Cell. Biochem., 2011, 353(1-2), 305-313.
[http://dx.doi.org/10.1007/s11010-011-0799-0] [PMID: 21461612]
[http://dx.doi.org/10.1007/s11010-011-0799-0] [PMID: 21461612]
[57]
Yue, P.; Jin, H.; Xu, S.; Aillaud, M.; Deng, A.C.; Azuma, J.; Kundu, R.K.; Reaven, G.M.; Quertermous, T.; Tsao, P.S. Apelin decreases lipolysis via G(q), G(i), and AMPK-dependent mechanisms. Endocrinology, 2011, 152(1), 59-68.
[http://dx.doi.org/10.1210/en.2010-0576] [PMID: 21047945]
[http://dx.doi.org/10.1210/en.2010-0576] [PMID: 21047945]
[58]
Hwangbo, C.; Wu, J.; Papangeli, I.; Adachi, T.; Sharma, B.; Park, S.; Zhao, L.; Ju, H.; Go, G.W.; Cui, G.; Inayathullah, M.; Job, J.K.; Rajadas, J.; Kwei, S.L.; Li, M.O.; Morrison, A.R.; Quertermous, T.; Mani, A.; Red-Horse, K.; Chun, H.J. Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin’s glucose-lowering effects. Sci. Transl. Med., 2017, 9(407)eaad4000
[http://dx.doi.org/10.1126/scitranslmed.aad4000] [PMID: 28904225]
[http://dx.doi.org/10.1126/scitranslmed.aad4000] [PMID: 28904225]
[59]
Xu, S.; Tsao, P.S.; Yue, P. Apelin and insulin resistance: another arrow for the quiver? J. Diabetes, 2011, 3(3), 225-231.
[http://dx.doi.org/10.1111/j.1753-0407.2011.00132.x] [PMID: 21631898]
[http://dx.doi.org/10.1111/j.1753-0407.2011.00132.x] [PMID: 21631898]
[60]
Cavallo, M.G.; Sentinelli, F.; Barchetta, I.; Costantino, C.; Incani, M.; Perra, L.; Capoccia, D.; Romeo, S.; Cossu, E.; Leonetti, F.; Agati, L.; Baroni, M.G. Altered glucose homeostasis is associated with increased serum apelin levels in type 2 diabetes mellitus. PLoS One, 2012, 7(12)e51236
[http://dx.doi.org/10.1371/journal.pone.0051236] [PMID: 23227256]
[http://dx.doi.org/10.1371/journal.pone.0051236] [PMID: 23227256]
[61]
Ercin, C.N.; Dogru, T.; Tapan, S.; Kara, M.; Haymana, C.; Karadurmus, N.; Karslioglu, Y.; Acikel, C. Plasma apelin levels in subjects with nonalcoholic fatty liver disease. Metabolism, 2010, 59(7), 977-981.
[http://dx.doi.org/10.1016/j.metabol.2009.10.019] [PMID: 20045153]
[http://dx.doi.org/10.1016/j.metabol.2009.10.019] [PMID: 20045153]
[62]
Aktas, B.; Yilmaz, Y.; Eren, F.; Yonal, O.; Kurt, R.; Alahdab, Y.O.; Celikel, C.A.; Ozdogan, O.; Imeryuz, N.; Kalayci, C.; Avsar, E. Serum levels of vaspin, obestatin, and apelin-36 in patients with nonalcoholic fatty liver disease. Metabolism, 2011, 60(4), 544-549.
[http://dx.doi.org/10.1016/j.metabol.2010.05.008] [PMID: 20580037]
[http://dx.doi.org/10.1016/j.metabol.2010.05.008] [PMID: 20580037]
[63]
Motawi, T.M.K.; Mahdy, S.G.; El-Sawalhi, M.M.; Ali, E.N.; El-Telbany, R.F.A. Serum levels of chemerin, apelin, vaspin, and omentin-1 in obese type 2 diabetic Egyptian patients with coronary artery stenosis. Can. J. Physiol. Pharmacol., 2018, 96(1), 38-44.
[http://dx.doi.org/10.1139/cjpp-2017-0272] [PMID: 28957639]
[http://dx.doi.org/10.1139/cjpp-2017-0272] [PMID: 28957639]
[64]
Dray, C.; Debard, C.; Jager, J.; Disse, E.; Daviaud, D.; Martin, P.; Attané, C.; Wanecq, E.; Guigné, C.; Bost, F.; Tanti, J.F.; Laville, M.; Vidal, H.; Valet, P.; Castan-Laurell, I. Apelin and APJ regulation in adipose tissue and skeletal muscle of type 2 diabetic mice and humans. Am. J. Physiol. Endocrinol. Metab., 2010, 298(6), E1161-E1169.
[http://dx.doi.org/10.1152/ajpendo.00598.2009] [PMID: 20233941]
[http://dx.doi.org/10.1152/ajpendo.00598.2009] [PMID: 20233941]
[65]
Soriguer, F.; Garrido-Sanchez, L.; Garcia-Serrano, S.; Garcia-Almeida, J.M.; Garcia-Arnes, J.; Tinahones, F.J.; Garcia-Fuentes, E. Apelin levels are increased in morbidly obese subjects with type 2 diabetes mellitus. Obes. Surg., 2009, 19(11), 1574-1580.
[http://dx.doi.org/10.1007/s11695-009-9955-y] [PMID: 19756893]
[http://dx.doi.org/10.1007/s11695-009-9955-y] [PMID: 19756893]
[66]
Li, L.; Yang, G.; Li, Q.; Tang, Y.; Yang, M.; Yang, H.; Li, K. Changes and relations of circulating visfatin, apelin, and resistin levels in normal, impaired glucose tolerance, and type 2 diabetic subjects. Exp. Clin. Endocrinol. Diabetes, 2006, 114(10), 544-548.
[http://dx.doi.org/10.1055/s-2006-948309] [PMID: 17177135]
[http://dx.doi.org/10.1055/s-2006-948309] [PMID: 17177135]
[67]
Ma, W.Y.; Yu, T.Y.; Wei, J.N.; Hung, C.S.; Lin, M.S.; Liao, Y.J.; Pei, D.; Su, C.C.; Lu, K.C.; Liu, P.H.; Lin, C.H.; Chuang, L.M.; Kao, H.L.; Lin, J.W.; Chuang, Y.J.; Li, H.Y. Plasma apelin: A novel biomarker for predicting diabetes. Clin. Chim. Acta, 2014, 435, 18-23.
[http://dx.doi.org/10.1016/j.cca.2014.03.030] [PMID: 24721640]
[http://dx.doi.org/10.1016/j.cca.2014.03.030] [PMID: 24721640]
[68]
Du, J.H.; Li, X.; Li, R.; Xu, L.; Ma, R.R.; Liu, S.F.; Zhang, Z.; Sun, H.Z. Elevation of serum apelin-13 associated with proliferative diabetic retinopathy in type 2 diabetic patients. Int. J. Ophthalmol., 2014, 7(6), 968-973.
[PMID: 25540748]
[PMID: 25540748]
[69]
Fan, Y.; Zhang, Y.; Li, X.; Zheng, H.; Song, Y.; Zhang, N.; Shen, C.; Fan, X.; Ren, F.; Shen, J.; Ren, G.; Yang, J. Treatment with metformin and a dipeptidyl peptidase-4 inhibitor elevates apelin levels in patients with type 2 diabetes mellitus. Drug Des. Devel. Ther., 2015, 9, 4679-4683.
[http://dx.doi.org/10.2147/DDDT.S85740] [PMID: 26316706]
[http://dx.doi.org/10.2147/DDDT.S85740] [PMID: 26316706]
[70]
Erdem, G.; Dogru, T.; Tasci, I.; Sonmez, A.; Tapan, S. Low plasma apelin levels in newly diagnosed type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes, 2008, 116(5), 289-292.
[http://dx.doi.org/10.1055/s-2007-1004564] [PMID: 18484561]
[http://dx.doi.org/10.1055/s-2007-1004564] [PMID: 18484561]
[71]
Zhang, Y.; Shen, C.; Li, X.; Ren, G.; Fan, X.; Ren, F.; Zhang, N.; Sun, J.; Yang, J. Low plasma apelin in newly diagnosed type 2 diabetes in Chinese people. Diabetes Care, 2009, 32(12)e150
[http://dx.doi.org/10.2337/dc09-1146] [PMID: 19940213]
[http://dx.doi.org/10.2337/dc09-1146] [PMID: 19940213]
[72]
Habchi, M.; Duvillard, L.; Cottet, V.; Brindisi, M.C.; Bouillet, B.; Beacco, M.; Crevisy, E.; Buffier, P.; Baillot-Rudoni, S.; Verges, B.; Petit, J.M. Circulating apelin is increased in patients with type 1 or type 2 diabetes and is associated with better glycaemic control. Clin. Endocrinol. (Oxf.), 2014, 81(5), 696-701.
[http://dx.doi.org/10.1111/cen.12404] [PMID: 24417455]
[http://dx.doi.org/10.1111/cen.12404] [PMID: 24417455]
[73]
Polkowska, A.; Szczepaniak, I.; Bossowski, A. Assessment of serum concentrations of ghrelin, obestatin, omentin-1, and apelin in children with type 1 diabetes. BioMed Res. Int., 2016, 20168379294
[http://dx.doi.org/10.1155/2016/8379294] [PMID: 26904686]
[http://dx.doi.org/10.1155/2016/8379294] [PMID: 26904686]
[74]
Sentinelli, F.; Capoccia, D.; Bertoccini, L.; Barchetta, I.; Incani, M.; Coccia, F.; Manconi, E.; Lenzi, A.; Cossu, E.; Leonetti, F.; Cavallo, M.G.; Baroni, M.G. Search for genetic variant in the apelin gene by resequencing and association study in european subjects. Genet. Test. Mol. Biomarkers, 2016, 20(2), 98-102.
[http://dx.doi.org/10.1089/gtmb.2015.0260] [PMID: 26789934]
[http://dx.doi.org/10.1089/gtmb.2015.0260] [PMID: 26789934]
[75]
Zhang, R.; Hu, C.; Wang, C.R.; Ma, X.J.; Bao, Y.Q.; Xu, J.; Lu, J.Y.; Qin, W.; Xiang, K.S.; Jia, W.P. Association of apelin genetic variants with type 2 diabetes and related clinical features in Chinese Hans. Chin. Med. J. (Engl.), 2009, 122(11), 1273-1276.
[PMID: 19567136]
[PMID: 19567136]
[76]
Aboouf, M.A.; Hamdy, N.M.; Amin, A.I.; El-Mesallamy, H.O. Genotype screening of APLN rs3115757 variant in Egyptian women population reveals an association with obesity and insulin resistance. Diabetes Res. Clin. Pract., 2015, 109(1), 40-47.
[http://dx.doi.org/10.1016/j.diabres.2015.05.016] [PMID: 26025696]
[http://dx.doi.org/10.1016/j.diabres.2015.05.016] [PMID: 26025696]
[77]
Sheibani, S.; Hanachi, P.; Refahiat, M.A. Effect of aerobic exercise on serum concentration of Apelin, TNFα and insulin in obese women. Iran. J. Basic Med. Sci., 2012, 15(6), 1196-1201.
[PMID: 23653851]
[PMID: 23653851]
[78]
Krist, J.; Wieder, K.; Klöting, N.; Oberbach, A.; Kralisch, S.; Wiesner, T.; Schön, M.R.; Gärtner, D.; Dietrich, A.; Shang, E.; Lohmann, T.; Dreßler, M.; Fasshauer, M.; Stumvoll, M.; Blüher, M. Effects of weight loss and exercise on apelin serum concentrations and adipose tissue expression in human obesity. Obes. Facts, 2013, 6(1), 57-69.
[http://dx.doi.org/10.1159/000348667] [PMID: 23429279]
[http://dx.doi.org/10.1159/000348667] [PMID: 23429279]
[79]
Kadoglou, N.P.; Vrabas, I.S.; Kapelouzou, A.; Angelopoulou, N. The association of physical activity with novel adipokines in patients with type 2 diabetes. Eur. J. Intern. Med., 2012, 23(2), 137-142.
[http://dx.doi.org/10.1016/j.ejim.2011.10.020] [PMID: 22284243]
[http://dx.doi.org/10.1016/j.ejim.2011.10.020] [PMID: 22284243]
[80]
Kadoglou, N.P.; Vrabas, I.S.; Kapelouzou, A.; Lampropoulos, S.; Sailer, N.; Kostakis, A.; Liapis, C.D.; Angelopoulou, N. The impact of aerobic exercise training on novel adipokines, apelin and ghrelin, in patients with type 2 diabetes. Med. Sci. Monit., 2012, 18(5), CR290-CR295.
[http://dx.doi.org/10.12659/MSM.882734] [PMID: 22534708]
[http://dx.doi.org/10.12659/MSM.882734] [PMID: 22534708]
[81]
Bilir, B.; Ekiz Bilir, B.; Yilmaz, I.; Soysal Atile, N.; Yildirim, T.; Kara, S.P.; Gumustas, S.A.; Orhan, A.E.; Aydin, M. Association of apelin, endoglin and endocan with diabetic peripheral neuropathy in type 2 diabetic patients. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(5), 892-898.
[PMID: 27010147]
[PMID: 27010147]
[82]
Guo, C.; Liu, Y.; Zhao, W.; Wei, S.; Zhang, X.; Wang, W.; Zeng, X. Apelin promotes diabetic nephropathy by inducing podocyte dysfunction via inhibiting proteasome activities. J. Cell. Mol. Med., 2015, 19(9), 2273-2285.
[http://dx.doi.org/10.1111/jcmm.12619] [PMID: 26103809]
[http://dx.doi.org/10.1111/jcmm.12619] [PMID: 26103809]
[83]
Zhuravlyova, L.V.; Shekhovtsova, Y.A. Diagnostic markers for chronic pancreatitis in patients with type 2 diabetes mellitus with different phenotype. Eksp. Klin. Gastroenterol., 2015, (6), 47-52.
[PMID: 26817104]
[PMID: 26817104]
[84]
Silva, A.P.; Fragoso, A.; Silva, C.; Viegas, C.; Tavares, N.; Guilherme, P.; Santos, N.; Rato, F.; Camacho, A.; Cavaco, C.; Pereira, V.; Faísca, M.; Ataíde, J.; Jesus, I.; Neves, P. What is the role of apelin regarding cardiovascular risk and progression of renal disease in type 2 diabetic patients with diabetic nephropathy? BioMed Res. Int., 2013, 2013247649
[http://dx.doi.org/10.1155/2013/247649] [PMID: 24089668]
[http://dx.doi.org/10.1155/2013/247649] [PMID: 24089668]
[85]
Akcılar, R.; Turgut, S.; Caner, V.; Akcılar, A.; Ayada, C.; Elmas, L.; Özcan, T.O. The effects of apelin treatment on a rat model of type 2 diabetes. Adv. Med. Sci., 2015, 60(1), 94-100.
[http://dx.doi.org/10.1016/j.advms.2014.11.001] [PMID: 25625368]
[http://dx.doi.org/10.1016/j.advms.2014.11.001] [PMID: 25625368]
[86]
Attané, C.; Foussal, C.; Le Gonidec, S.; Benani, A.; Daviaud, D.; Wanecq, E.; Guzmán-Ruiz, R.; Dray, C.; Bezaire, V.; Rancoule, C.; Kuba, K.; Ruiz-Gayo, M.; Levade, T.; Penninger, J.; Burcelin, R.; Pénicaud, L.; Valet, P.; Castan-Laurell, I. Apelin treatment increases complete fatty acid oxidation, mitochondrial oxidative capacity, and biogenesis in muscle of insulin-resistant mice. Diabetes, 2012, 61(2), 310-320.
[http://dx.doi.org/10.2337/db11-0100] [PMID: 22210322]
[http://dx.doi.org/10.2337/db11-0100] [PMID: 22210322]
[87]
Yang, R.Z.; Lee, M.J.; Hu, H.; Pray, J.; Wu, H.B.; Hansen, B.C.; Shuldiner, A.R.; Fried, S.K.; McLenithan, J.C.; Gong, D.W. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am. J. Physiol. Endocrinol. Metab., 2006, 290(6), E1253-E1261.
[http://dx.doi.org/10.1152/ajpendo.00572.2004] [PMID: 16531507]
[http://dx.doi.org/10.1152/ajpendo.00572.2004] [PMID: 16531507]
[88]
de Souza Batista, C.M.; Yang, R.Z.; Lee, M.J.; Glynn, N.M.; Yu, D.Z.; Pray, J.; Ndubuizu, K.; Patil, S.; Schwartz, A.; Kligman, M.; Fried, S.K.; Gong, D.W.; Shuldiner, A.R.; Pollin, T.I.; McLenithan, J.C. Omentin plasma levels and gene expression are decreased in obesity. Diabetes, 2007, 56(6), 1655-1661.
[http://dx.doi.org/10.2337/db06-1506] [PMID: 17329619]
[http://dx.doi.org/10.2337/db06-1506] [PMID: 17329619]
[89]
Schäffler, A.; Neumeier, M.; Herfarth, H.; Fürst, A.; Schölmerich, J.; Büchler, C. Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue. Biochim. Biophys. Acta, 2005, 1732(1-3), 96-102.
[http://dx.doi.org/10.1016/j.bbaexp.2005.11.005] [PMID: 16386808]
[http://dx.doi.org/10.1016/j.bbaexp.2005.11.005] [PMID: 16386808]
[90]
Wang, C. Obesity, inflammation, and lung injury (OILI): the good. Mediators Inflamm., 2014, 2014978463
[http://dx.doi.org/10.1155/2014/978463] [PMID: 24899788]
[http://dx.doi.org/10.1155/2014/978463] [PMID: 24899788]
[91]
Tan, B.K.; Adya, R.; Randeva, H.S. Omentin: a novel link between inflammation, diabesity, and cardiovascular disease. Trends Cardiovasc. Med., 2010, 20(5), 143-148.
[http://dx.doi.org/10.1016/j.tcm.2010.12.002] [PMID: 21742269]
[http://dx.doi.org/10.1016/j.tcm.2010.12.002] [PMID: 21742269]
[92]
Barker, G.; Lim, R.; Georgiou, H.M.; Lappas, M. Omentin-1 is decreased in maternal plasma, placenta and adipose tissue of women with pre-existing obesity. PLoS One, 2012, 7(8)e42943
[http://dx.doi.org/10.1371/journal.pone.0042943] [PMID: 22952622]
[http://dx.doi.org/10.1371/journal.pone.0042943] [PMID: 22952622]
[93]
Greulich, S.; Chen, W.J.; Maxhera, B.; Rijzewijk, L.J.; van der Meer, R.W.; Jonker, J.T.; Mueller, H.; de Wiza, D.H.; Floerke, R.R.; Smiris, K.; Lamb, H.J.; de Roos, A.; Bax, J.J.; Romijn, J.A.; Smit, J.W.; Akhyari, P.; Lichtenberg, A.; Eckel, J.; Diamant, M.; Ouwens, D.M. Cardioprotective properties of omentin-1 in type 2 diabetes: evidence from clinical and in vitro studies. PLoS One, 2013, 8(3)e59697
[http://dx.doi.org/10.1371/journal.pone.0059697] [PMID: 23555749]
[http://dx.doi.org/10.1371/journal.pone.0059697] [PMID: 23555749]
[94]
Du, Y.; Ji, Q.; Cai, L.; Huang, F.; Lai, Y.; Liu, Y.; Yu, J.; Han, B.; Zhu, E.; Zhang, J.; Zhou, Y.; Wang, Z.; Zhao, Y. Association between omentin-1 expression in human epicardial adipose tissue and coronary atherosclerosis. Cardiovasc. Diabetol., 2016, 15(1), 90.
[http://dx.doi.org/10.1186/s12933-016-0406-5] [PMID: 27352781]
[http://dx.doi.org/10.1186/s12933-016-0406-5] [PMID: 27352781]
[95]
Zabetian-Targhi, F.; Mirzaei, K.; Keshavarz, S.A.; Hossein-Nezhad, A. Modulatory role of omentin-1 in inflammation: cytokines and dietary intake. J. Am. Coll. Nutr., 2016, 35(8), 670-678.
[http://dx.doi.org/10.1080/07315724.2015.1126207] [PMID: 27331575]
[http://dx.doi.org/10.1080/07315724.2015.1126207] [PMID: 27331575]
[96]
Yamawaki, H.; Kuramoto, J.; Kameshima, S.; Usui, T.; Okada, M.; Hara, Y. Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells. Biochem. Biophys. Res. Commun., 2011, 408(2), 339-343.
[http://dx.doi.org/10.1016/j.bbrc.2011.04.039] [PMID: 21514279]
[http://dx.doi.org/10.1016/j.bbrc.2011.04.039] [PMID: 21514279]
[97]
Shibata, R.; Ouchi, N.; Kikuchi, R.; Takahashi, R.; Takeshita, K.; Kataoka, Y.; Ohashi, K.; Ikeda, N.; Kihara, S.; Murohara, T. Circulating omentin is associated with coronary artery disease in men. Atherosclerosis, 2011, 219(2), 811-814.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.08.017] [PMID: 21925659]
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.08.017] [PMID: 21925659]
[98]
Shang, F.J.; Wang, J.P.; Liu, X.T.; Zheng, Q.S.; Xue, Y.S.; Wang, B.; Zhao, L.Y. Serum omentin-1 levels are inversely associated with the presence and severity of coronary artery disease in patients with metabolic syndrome. Biomarkers, 2011, 16(8), 657-662.
[http://dx.doi.org/10.3109/1354750X.2011.622789] [PMID: 21988056]
[http://dx.doi.org/10.3109/1354750X.2011.622789] [PMID: 21988056]
[99]
Menzel, J.; di Giuseppe, R.; Biemann, R.; Wittenbecher, C.; Aleksandrova, K.; Pischon, T.; Fritsche, A.; Schulze, M.B.; Boeing, H.; Isermann, B.; Weikert, C. Omentin-1 and risk of myocardial infarction and stroke: Results from the EPIC-Potsdam Cohort study. Atherosclerosis, 2016, 251, 415-421.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.06.003] [PMID: 27298015]
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.06.003] [PMID: 27298015]
[100]
Lapointe, M.; Poirier, P.; Martin, J.; Bastien, M.; Auclair, A.; Cianflone, K. Omentin changes following bariatric surgery and predictive links with biomarkers for risk of cardiovascular disease. Cardiovasc. Diabetol., 2014, 13, 124.
[http://dx.doi.org/10.1186/s12933-014-0124-9] [PMID: 25139582]
[http://dx.doi.org/10.1186/s12933-014-0124-9] [PMID: 25139582]
[101]
Panagiotou, G.; Mu, L.; Na, B.; Mukamal, K.J.; Mantzoros, C.S. Circulating irisin, omentin-1, and lipoprotein subparticles in adults at higher cardiovascular risk. Metabolism, 2014, 63(10), 1265-1271.
[http://dx.doi.org/10.1016/j.metabol.2014.06.001] [PMID: 25060690]
[http://dx.doi.org/10.1016/j.metabol.2014.06.001] [PMID: 25060690]
[102]
Vu, A.; Sidhom, M.S.; Bredbeck, B.C.; Kosmiski, L.A.; Aquilante, C.L. Evaluation of the relationship between circulating omentin-1 concentrations and components of the metabolic syndrome in adults without type 2 diabetes or cardiovascular disease. Diabetol. Metab. Syndr., 2014, 6(1), 4.
[http://dx.doi.org/10.1186/1758-5996-6-4] [PMID: 24428913]
[http://dx.doi.org/10.1186/1758-5996-6-4] [PMID: 24428913]
[103]
Jialal, I.; Devaraj, S.; Kaur, H.; Adams-Huet, B.; Bremer, A.A. Increased chemerin and decreased omentin-1 in both adipose tissue and plasma in nascent metabolic syndrome. J. Clin. Endocrinol. Metab., 2013, 98(3), E514-E517.
[http://dx.doi.org/10.1210/jc.2012-3673] [PMID: 23303213]
[http://dx.doi.org/10.1210/jc.2012-3673] [PMID: 23303213]
[104]
Prats-Puig, A.; Bassols, J.; Bargalló, E.; Mas-Parareda, M.; Ribot, R.; Soriano-Rodríguez, P.; Berengüí, À.; Díaz, M.; de Zegher, F.; Ibánez, L.; López-Bermejo, A. Toward an early marker of metabolic dysfunction: omentin-1 in prepubertal children. Obesity (Silver Spring), 2011, 19(9), 1905-1907.
[http://dx.doi.org/10.1038/oby.2011.198] [PMID: 21720428]
[http://dx.doi.org/10.1038/oby.2011.198] [PMID: 21720428]
[105]
Huang, Y.; Lin, Y.; Zhang, S.; Wang, Z.; Zhang, J.; Chang, C.; Liu, L.; Ji, Q.; Liu, X. Circulating omentin-1 levels are decreased in dilated cardiomyopathy patients with overt heart failure. Dis. Markers, 2016, 20166762825
[http://dx.doi.org/10.1155/2016/6762825] [PMID: 27313334]
[http://dx.doi.org/10.1155/2016/6762825] [PMID: 27313334]
[106]
Tan, B.K.; Adya, R.; Farhatullah, S.; Lewandowski, K.C.; O’Hare, P.; Lehnert, H.; Randeva, H.S. Omentin-1, a novel adipokine, is decreased in overweight insulin-resistant women with polycystic ovary syndrome: ex vivo and in vivo regulation of omentin-1 by insulin and glucose. Diabetes, 2008, 57(4), 801-808.
[http://dx.doi.org/10.2337/db07-0990] [PMID: 18174521]
[http://dx.doi.org/10.2337/db07-0990] [PMID: 18174521]
[107]
Moreno-Navarrete, J.M.; Ortega, F.; Castro, A.; Sabater, M.; Ricart, W.; Fernández-Real, J.M. Circulating omentin as a novel biomarker of endothelial dysfunction. Obesity (Silver Spring), 2011, 19(8), 1552-1559.
[http://dx.doi.org/10.1038/oby.2010.351] [PMID: 21293447]
[http://dx.doi.org/10.1038/oby.2010.351] [PMID: 21293447]
[108]
Herder, C.; Bongaerts, B.W.; Ouwens, D.M.; Rathmann, W.; Heier, M.; Carstensen-Kirberg, M.; Koenig, W.; Thorand, B.; Roden, M.; Meisinger, C.; Ziegler, D. Low serum omentin levels in the elderly population with Type 2 diabetes and polyneuropathy. Diabet. Med., 2015, 32(11), 1479-1483.
[http://dx.doi.org/10.1111/dme.12761] [PMID: 26094489]
[http://dx.doi.org/10.1111/dme.12761] [PMID: 26094489]
[109]
Tekce, H.; Tekce, B.K.; Aktas, G.; Alcelik, A.; Sengul, E. Serum omentin-1 levels in diabetic and nondiabetic patients with chronic kidney disease. Exp. Clin. Endocrinol. Diabetes, 2014, 122(8), 451-456.
[http://dx.doi.org/10.1055/s-0034-1375674] [PMID: 24918534]
[http://dx.doi.org/10.1055/s-0034-1375674] [PMID: 24918534]
[110]
Watanabe, K.; Watanabe, R.; Konii, H.; Shirai, R.; Sato, K.; Matsuyama, T.A.; Ishibashi-Ueda, H.; Koba, S.; Kobayashi, Y.; Hirano, T.; Watanabe, T. Counteractive effects of omentin-1 against atherogenesis. Cardiovasc. Res., 2016, 110(1), 118-128.
[http://dx.doi.org/10.1093/cvr/cvw016] [PMID: 26790473]
[http://dx.doi.org/10.1093/cvr/cvw016] [PMID: 26790473]
[111]
Nassif, W.M.; Amin, A.I.; Hassan, Z.A.; Abdelaziz, D.H. Changes of serum omentin-1 levels and relationship between omentin-1 and insulin resistance in chronic hepatitis C patients. EXCLI J., 2013, 12, 924-932.
[PMID: 27092037]
[PMID: 27092037]
[112]
Yilmaz, Y.; Yonal, O.; Kurt, R.; Alahdab, Y.O.; Eren, F.; Ozdogan, O.; Celikel, C.A.; Imeryuz, N.; Kalayci, C.; Avsar, E. Serum levels of omentin, chemerin and adipsin in patients with biopsy-proven nonalcoholic fatty liver disease. Scand. J. Gastroenterol., 2011, 46(1), 91-97.
[http://dx.doi.org/10.3109/00365521.2010.516452] [PMID: 20809771]
[http://dx.doi.org/10.3109/00365521.2010.516452] [PMID: 20809771]
[113]
Aleksandrova, K.; di Giuseppe, R.; Isermann, B.; Biemann, R.; Schulze, M.; Wittenbecher, C.; Fritsche, A.; Lehmann, R.; Menzel, J.; Weikert, C.; Pischon, T.; Boeing, H. Circulating omentin as a novel biomarker for colorectal cancer risk: data from the EPIC-Potsdam Cohort Study. Cancer Res., 2016, 76(13), 3862-3871.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3464] [PMID: 27216184]
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3464] [PMID: 27216184]
[114]
Wu, S.S.; Liang, Q.H.; Liu, Y.; Cui, R.R.; Yuan, L.Q.; Liao, E.Y. Omentin-1 stimulates human osteoblast proliferation through PI3K/Akt signal pathway. Int. J. Endocrinol., 2013.2013368970
[http://dx.doi.org/10.1155/2013/368970] [PMID: 23606838]
[http://dx.doi.org/10.1155/2013/368970] [PMID: 23606838]
[115]
Xie, H.; Xie, P.L.; Wu, X.P.; Chen, S.M.; Zhou, H.D.; Yuan, L.Q.; Sheng, Z.F.; Tang, S.Y.; Luo, X.H.; Liao, E.Y. Omentin-1 attenuates arterial calcification and bone loss in osteoprotegerin-deficient mice by inhibition of RANKL expression. Cardiovasc. Res., 2011, 92(2), 296-306.
[http://dx.doi.org/10.1093/cvr/cvr200] [PMID: 21750093]
[http://dx.doi.org/10.1093/cvr/cvr200] [PMID: 21750093]
[116]
Pan, H.Y.; Guo, L.; Li, Q. Changes of serum omentin-1 levels in normal subjects and in patients with impaired glucose regulation and with newly diagnosed and untreated type 2 diabetes. Diabetes Res. Clin. Pract., 2010, 88(1), 29-33.
[http://dx.doi.org/10.1016/j.diabres.2010.01.013] [PMID: 20129687]
[http://dx.doi.org/10.1016/j.diabres.2010.01.013] [PMID: 20129687]
[117]
Tan, B.K.; Pua, S.; Syed, F.; Lewandowski, K.C.; O’Hare, J.P.; Randeva, H.S. Decreased plasma omentin-1 levels in Type 1 diabetes mellitus. Diabet. Med., 2008, 25(10), 1254-1255.
[http://dx.doi.org/10.1111/j.1464-5491.2008.02568.x] [PMID: 19046210]
[http://dx.doi.org/10.1111/j.1464-5491.2008.02568.x] [PMID: 19046210]
[118]
Cai, R.C.; Wei, L.; Di, J.Z.; Yu, H.Y.; Bao, Y.Q.; Jia, W.P. [Expression of omentin in adipose tissues in obese and type 2 diabetic patients Zhonghua Yi Xue Za Zhi, 2009, 89(6), 381-384.
[PMID: 19567114]
[PMID: 19567114]
[119]
Zhang, Q.; Zhu, L.; Zheng, M.; Fan, C.; Li, Y.; Zhang, D.; He, Y.; Yang, H. Changes of serum omentin-1 levels in normal subjects, type 2 diabetes and type 2 diabetes with overweight and obesity in Chinese adults. Ann. Endocrinol. (Paris), 2014, 75(3), 171-175.
[http://dx.doi.org/10.1016/j.ando.2014.04.013] [PMID: 24997770]
[http://dx.doi.org/10.1016/j.ando.2014.04.013] [PMID: 24997770]
[120]
Yoo, H.J.; Hwang, S.Y.; Hong, H.C.; Choi, H.Y.; Yang, S.J.; Lee, K.W.; Nam, M.S.; Park, Y.S.; Woo, J.T.; Kim, Y.S.; Choi, K.M.; Baik, S.H. Implication of circulating omentin-1 level on the arterial stiffening in type 2 diabetes mellitus. Endocrine, 2013, 44(3), 680-687.
[http://dx.doi.org/10.1007/s12020-013-9930-1] [PMID: 23532633]
[http://dx.doi.org/10.1007/s12020-013-9930-1] [PMID: 23532633]
[121]
Kocijancic, M.; Vujicic, B.; Racki, S.; Cubranic, Z.; Zaputovic, L.; Dvornik, S. Serum omentin-1 levels as a possible risk factor of mortality in patients with diabetes on haemodialysis. Diabetes Res. Clin. Pract., 2015, 110(1), 44-50.
[http://dx.doi.org/10.1016/j.diabres.2015.06.008] [PMID: 26293449]
[http://dx.doi.org/10.1016/j.diabres.2015.06.008] [PMID: 26293449]
[122]
Elbein, S.C.; Hoffman, M.D.; Teng, K.; Leppert, M.F.; Hasstedt, S.J. A genome-wide search for type 2 diabetes susceptibility genes in Utah Caucasians. Diabetes, 1999, 48(5), 1175-1182.
[http://dx.doi.org/10.2337/diabetes.48.5.1175] [PMID: 10331426]
[http://dx.doi.org/10.2337/diabetes.48.5.1175] [PMID: 10331426]
[123]
Hanson, R.L.; Ehm, M.G.; Pettitt, D.J.; Prochazka, M.; Thompson, D.B.; Timberlake, D.; Foroud, T.; Kobes, S.; Baier, L.; Burns, D.K.; Almasy, L.; Blangero, J.; Garvey, W.T.; Bennett, P.H.; Knowler, W.C. An autosomal genomic scan for loci linked to type II diabetes mellitus and body-mass index in Pima Indians. Am. J. Hum. Genet., 1998, 63(4), 1130-1138.
[http://dx.doi.org/10.1086/302061] [PMID: 9758619]
[http://dx.doi.org/10.1086/302061] [PMID: 9758619]
[124]
Vionnet, N.; Hani, E.H.; Dupont, S.; Gallina, S.; Francke, S.; Dotte, S.; De Matos, F.; Durand, E.; Leprêtre, F.; Lecoeur, C.; Gallina, P.; Zekiri, L.; Dina, C.; Froguel, P. Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24. Am. J. Hum. Genet., 2000, 67(6), 1470-1480.
[http://dx.doi.org/10.1086/316887] [PMID: 11067779]
[http://dx.doi.org/10.1086/316887] [PMID: 11067779]
[125]
Catli, G.; Anik, A.; Abaci, A.; Kume, T.; Bober, E. Low omentin-1 levels are related with clinical and metabolic parameters in obese children. Exp. Clin. Endocrinol. Diabetes, 2013, 121(10), 595-600.
[http://dx.doi.org/10.1055/s-0033-1355338] [PMID: 24085389]
[http://dx.doi.org/10.1055/s-0033-1355338] [PMID: 24085389]
[126]
Moreno-Navarrete, J.M.; Catalán, V.; Ortega, F.; Gómez-Ambrosi, J.; Ricart, W.; Frühbeck, G.; Fernández-Real, J.M. Circulating omentin concentration increases after weight loss. Nutr. Metab. (Lond.), 2010, 7, 27.
[http://dx.doi.org/10.1186/1743-7075-7-27] [PMID: 20380714]
[http://dx.doi.org/10.1186/1743-7075-7-27] [PMID: 20380714]
[127]
Wittenbecher, C.; Menzel, J.; Carstensen-Kirberg, M.; Biemann, R.; di Giuseppe, R.; Fritsche, A.; Isermann, B.; Herder, C.; Aleksandrova, K.; Boeing, H.; Weikert, C.; Schulze, M.B. Omentin-1, adiponectin, and the risk of developing type 2 diabetes. Diabetes Care, 2016, 39(6), e79-e80.
[http://dx.doi.org/10.2337/dc15-2702] [PMID: 27208328]
[http://dx.doi.org/10.2337/dc15-2702] [PMID: 27208328]
[128]
Madsen, S.M.; Thorup, A.C.; Bjerre, M.; Jeppesen, P.B. Does 8 weeks of strenuous bicycle exercise improve diabetes-related inflammatory cytokines and free fatty acids in type 2 diabetes patients and individuals at high-risk of metabolic syndrome? Arch. Physiol. Biochem., 2015, 121(4), 129-138.
[http://dx.doi.org/10.3109/13813455.2015.1082600] [PMID: 26469542]
[http://dx.doi.org/10.3109/13813455.2015.1082600] [PMID: 26469542]
[129]
Wilms, B.; Ernst, B.; Gerig, R.; Schultes, B. Plasma omentin-1 levels are related to exercise performance in obese women and increase upon aerobic endurance training. Exp. Clin. Endocrinol. Diabetes, 2015, 123(3), 187-192.
[http://dx.doi.org/10.1055/s-0034-1398504] [PMID: 25789872]
[http://dx.doi.org/10.1055/s-0034-1398504] [PMID: 25789872]
[130]
Lesná, J.; Tichá, A.; Hyšpler, R.; Musil, F.; Bláha, V.; Sobotka, L.; Zadák, Z.; Šmahelová, A. Omentin-1 plasma
levels and cholesterol metabolism in obese patients with
diabetes mellitus type 1: impact of weight reduction. Nutr.
Diabetes, 2015, 5, e183.
[http://dx.doi.org/10.1038/nutd.2015.33] [PMID: 26524638]
[http://dx.doi.org/10.1038/nutd.2015.33] [PMID: 26524638]
[131]
Viollet, B.; Guigas, B.; Sanz Garcia, N.; Leclerc, J.; Foretz, M.; Andreelli, F. Cellular and molecular mechanisms of metformin: an overview. Clin. Sci. (Lond.), 2012, 122(6), 253-270.
[http://dx.doi.org/10.1042/CS20110386] [PMID: 22117616]
[http://dx.doi.org/10.1042/CS20110386] [PMID: 22117616]
[132]
Alkuraishy, H.M.; Al-Gareeb, A.I. New insights into the role of metformin effects on serum omentin-1 levels in acute myocardial infarction: Cross-Sectional Study. Emerg. Med. Int., 2015, 2015283021
[http://dx.doi.org/10.1155/2015/283021] [PMID: 26682070]
[http://dx.doi.org/10.1155/2015/283021] [PMID: 26682070]
[133]
Al-Gareeb, A.I.; Alrubai, H.F.; Suliaman, S.M. Effects of gliclazide add on metformin on serum omentin-1 levels in patients with type 2 diabetes mellitus. Indian J. Endocrinol. Metab., 2016, 20(2), 195-198.
[http://dx.doi.org/10.4103/2230-8210.176355] [PMID: 27042415]
[http://dx.doi.org/10.4103/2230-8210.176355] [PMID: 27042415]
[134]
Derosa, G.; Carbone, A.; D’Angelo, A.; Querci, F.; Fogari, E.; Cicero, A.F.; Maffioli, P. Variations in inflammatory biomarkers following the addition of sitagliptin in patients with type 2 diabetes not controlled with metformin. Intern. Med., 2013, 52(19), 2179-2187.
[http://dx.doi.org/10.2169/internalmedicine.52.8175] [PMID: 24088749]
[http://dx.doi.org/10.2169/internalmedicine.52.8175] [PMID: 24088749]
[135]
Derosa, G.; Cicero, A.F.; Franzetti, I.G.; Querci, F.; Carbone, A.; Ciccarelli, L.; D’Angelo, A.; Fogari, E.; Maffioli, P. Effects of exenatide and metformin in combination on some adipocytokine levels: a comparison with metformin monotherapy. Can. J. Physiol. Pharmacol., 2013, 91(9), 724-732.
[http://dx.doi.org/10.1139/cjpp-2012-0300] [PMID: 23984793]
[http://dx.doi.org/10.1139/cjpp-2012-0300] [PMID: 23984793]
[136]
Feng, W.H.; Yuan, X.W.; Tong, G.Y.; Wang, W.M.; Hu, Y.; Shen, S.M.; Li, P.; Bi, Y.; Hu, J.; Shao, L.L.; Dai, Y.Y.; Liu, Y.Q.; Xiang, S.K.; Yang, D.H.; Zhu, D.L. Correlated increase of omentin-1 and adiponectin by exenatide, avandamet and dietary change in diet-induced obese rats. Folia Biol. (Praha), 2013, 59(6), 217-224.
[PMID: 24485303]
[PMID: 24485303]
[137]
Derosa, G.; Ragonesi, P.D.; Carbone, A.; Fogari, E.; D’Angelo, A.; Cicero, A.F.; Maffioli, P. RETRACTED: evaluation of the positive effects on insulin-resistance and β-cell measurements of vildagliptin in addition to metformin in type 2 diabetic patients. Pharmacol. Res., 2013, 73, 20-26.
[http://dx.doi.org/10.1016/j.phrs.2013.04.005] [PMID: 23624419]
[http://dx.doi.org/10.1016/j.phrs.2013.04.005] [PMID: 23624419]
[138]
Samal, B.; Sun, Y.; Stearns, G.; Xie, C.; Suggs, S.; McNiece, I. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell. Biol., 1994, 14(2), 1431-1437.
[http://dx.doi.org/10.1128/MCB.14.2.1431] [PMID: 8289818]
[http://dx.doi.org/10.1128/MCB.14.2.1431] [PMID: 8289818]
[139]
Rongvaux, A.; Shea, R.J.; Mulks, M.H.; Gigot, D.; Urbain, J.; Leo, O.; Andris, F. Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur. J. Immunol., 2002, 32(11), 3225-3234.
[http://dx.doi.org/10.1002/1521-4141(200211)32:11<3225:AID-IMMU3225>3.0.CO;2-L] [PMID: 12555668]
[http://dx.doi.org/10.1002/1521-4141(200211)32:11<3225:AID-IMMU3225>3.0.CO;2-L] [PMID: 12555668]
[140]
Fukuhara, A.; Matsuda, M.; Nishizawa, M.; Segawa, K.; Tanaka, M.; Kishimoto, K.; Matsuki, Y.; Murakami, M.; Ichisaka, T.; Murakami, H.; Watanabe, E.; Takagi, T.; Akiyoshi, M.; Ohtsubo, T.; Kihara, S.; Yamashita, S.; Makishima, M.; Funahashi, T.; Yamanaka, S.; Hiramatsu, R.; Matsuzawa, Y.; Shimomura, I. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science, 2005, 307(5708), 426-430.
[http://dx.doi.org/10.1126/science.1097243] [PMID: 15604363]
[http://dx.doi.org/10.1126/science.1097243] [PMID: 15604363]
[141]
Fukuhara, A.; Matsuda, M.; Nishizawa, M.; Segawa, K.; Tanaka, M.; Kishimoto, K.; Matsuki, Y.; Murakami, M.; Ichisaka, T.; Murakami, H.; Watanabe, E.; Takagi, T.; Akiyoshi, M.; Ohtsubo, T.; Kihara, S.; Yamashita, S.; Makishima, M.; Funahashi, T.; Yamanaka, S.; Hiramatsu, R.; Matsuzawa, Y.; Shimomura, I. Retraction. Science, 2007, 318(5850), 565.
[http://dx.doi.org/10.1126/science.318.5850.565b] [PMID: 17962537]
[http://dx.doi.org/10.1126/science.318.5850.565b] [PMID: 17962537]
[142]
Saddi-Rosa, P.; Oliveira, C.S.; Giuffrida, F.M.; Reis, A.F. Visfatin, glucose metabolism and vascular disease: a review of evidence. Diabetol. Metab. Syndr., 2010, 2, 21.
[http://dx.doi.org/10.1186/1758-5996-2-21] [PMID: 20346149]
[http://dx.doi.org/10.1186/1758-5996-2-21] [PMID: 20346149]
[143]
Friebe, D.; Neef, M.; Kratzsch, J.; Erbs, S.; Dittrich, K.; Garten, A.; Petzold-Quinque, S.; Blüher, S.; Reinehr, T.; Stumvoll, M.; Blüher, M.; Kiess, W.; Körner, A. Leucocytes are a major source of circulating nicotinamide phosphoribosyltransferase (NAMPT)/pre-B cell colony (PBEF)/visfatin linking obesity and inflammation in humans. Diabetologia, 2011, 54(5), 1200-1211.
[http://dx.doi.org/10.1007/s00125-010-2042-z] [PMID: 21298414]
[http://dx.doi.org/10.1007/s00125-010-2042-z] [PMID: 21298414]
[144]
Garten, A.; Petzold, S.; Barnikol-Oettler, A.; Körner, A.; Thasler, W.E.; Kratzsch, J.; Kiess, W.; Gebhardt, R. Nicotinamide phosphoribosyltransferase (NAMPT/PBEF/visfatin) is constitutively released from human hepatocytes. Biochem. Biophys. Res. Commun., 2010, 391(1), 376-381.
[http://dx.doi.org/10.1016/j.bbrc.2009.11.066] [PMID: 19912992]
[http://dx.doi.org/10.1016/j.bbrc.2009.11.066] [PMID: 19912992]
[145]
Kitani, T.; Okuno, S.; Fujisawa, H. Growth phase-dependent changes in the subcellular localization of pre-B-cell colony-enhancing factor. FEBS Lett., 2003, 544(1-3), 74-78.
[http://dx.doi.org/10.1016/S0014-5793(03)00476-9] [PMID: 12782293]
[http://dx.doi.org/10.1016/S0014-5793(03)00476-9] [PMID: 12782293]
[146]
Costford, S.R.; Bajpeyi, S.; Pasarica, M.; Albarado, D.C.; Thomas, S.C.; Xie, H.; Church, T.S.; Jubrias, S.A.; Conley, K.E.; Smith, S.R. Skeletal muscle NAMPT is induced by exercise in humans. Am. J. Physiol. Endocrinol. Metab., 2010, 298(1), E117-E126.
[http://dx.doi.org/10.1152/ajpendo.00318.2009] [PMID: 19887595]
[http://dx.doi.org/10.1152/ajpendo.00318.2009] [PMID: 19887595]
[147]
Kover, K.; Tong, P.Y.; Watkins, D.; Clements, M.; Stehno-Bittel, L.; Novikova, L.; Bittel, D.; Kibiryeva, N.; Stuhlsatz, J.; Yan, Y.; Ye, S.Q.; Moore, W.V. Expression and regulation of nampt in human islets. PLoS One, 2013, 8(3)e58767
[http://dx.doi.org/10.1371/journal.pone.0058767] [PMID: 23536823]
[http://dx.doi.org/10.1371/journal.pone.0058767] [PMID: 23536823]
[148]
Riammer, S.; Garten, A.; Schaab, M.; Grunewald, S.; Kiess, W.; Kratzsch, J.; Paasch, U. Nicotinamide phosphoribosyltransferase production in human spermatozoa is influenced by maturation stage. Andrology, 2016, 4(6), 1045-1053.
[http://dx.doi.org/10.1111/andr.12252] [PMID: 27566659]
[http://dx.doi.org/10.1111/andr.12252] [PMID: 27566659]
[149]
Curat, C.A.; Wegner, V.; Sengenès, C.; Miranville, A.; Tonus, C.; Busse, R.; Bouloumié, A. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia, 2006, 49(4), 744-747.
[http://dx.doi.org/10.1007/s00125-006-0173-z] [PMID: 16496121]
[http://dx.doi.org/10.1007/s00125-006-0173-z] [PMID: 16496121]
[150]
Chen, H.; Wang, S.; Zhang, H.; Nice, E.C.; Huang, C. Nicotinamide phosphoribosyltransferase (Nampt) in carcinogenesis: new clinical opportunities. Expert Rev. Anticancer Ther., 2016, 16(8), 827-838.
[http://dx.doi.org/10.1080/14737140.2016.1190649] [PMID: 27186719]
[http://dx.doi.org/10.1080/14737140.2016.1190649] [PMID: 27186719]
[151]
Shackelford, R.E.; Mayhall, K.; Maxwell, N.M.; Kandil, E.; Coppola, D. Nicotinamide phosphoribosyltransferase in malignancy: a review. Genes Cancer, 2013, 4(11-12), 447-456.
[http://dx.doi.org/10.1177/1947601913507576] [PMID: 24386506]
[http://dx.doi.org/10.1177/1947601913507576] [PMID: 24386506]
[152]
Garten, A.; Schuster, S.; Penke, M.; Gorski, T.; de Giorgis, T.; Kiess, W. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat. Rev. Endocrinol., 2015, 11(9), 535-546.
[http://dx.doi.org/10.1038/nrendo.2015.117] [PMID: 26215259]
[http://dx.doi.org/10.1038/nrendo.2015.117] [PMID: 26215259]
[153]
Brentano, F.; Schorr, O.; Ospelt, C.; Stanczyk, J.; Gay, R.E.; Gay, S.; Kyburz, D. Pre-B cell colony-enhancing factor/visfatin, a new marker of inflammation in rheumatoid arthritis with proinflammatory and matrix-degrading activities. Arthritis Rheum., 2007, 56(9), 2829-2839.
[http://dx.doi.org/10.1002/art.22833] [PMID: 17763446]
[http://dx.doi.org/10.1002/art.22833] [PMID: 17763446]
[154]
Axelsson, J.; Witasp, A.; Carrero, J.J.; Qureshi, A.R.; Suliman, M.E.; Heimbürger, O.; Bárány, P.; Lindholm, B.; Alvestrand, A.; Schalling, M.; Nordfors, L.; Stenvinkel, P. Circulating levels of visfatin/pre-B-cell colony-enhancing factor 1 in relation to genotype, GFR, body composition, and survival in patients with CKD. Am. J. Kidney Dis., 2007, 49(2), 237-244.
[http://dx.doi.org/10.1053/j.ajkd.2006.11.021] [PMID: 17261426]
[http://dx.doi.org/10.1053/j.ajkd.2006.11.021] [PMID: 17261426]
[155]
Wang, P.; Miao, C.Y. NAMPT as a therapeutic target against stroke. Trends Pharmacol. Sci., 2015, 36(12), 891-905.
[http://dx.doi.org/10.1016/j.tips.2015.08.012] [PMID: 26538317]
[http://dx.doi.org/10.1016/j.tips.2015.08.012] [PMID: 26538317]
[156]
Stastny, J.; Bienertova-Vasku, J.; Vasku, A. Visfatin and its role in obesity development. Diabetes Metab. Syndr., 2012, 6(2), 120-124.
[http://dx.doi.org/10.1016/j.dsx.2012.08.011] [PMID: 23153983]
[http://dx.doi.org/10.1016/j.dsx.2012.08.011] [PMID: 23153983]
[157]
Abenavoli, L.; Peta, V. Role of adipokines and cytokines in non-alcoholic fatty liver disease. Rev. Recent Clin. Trials, 2014, 9(3), 134-140.
[http://dx.doi.org/10.2174/1574887109666141216102458] [PMID: 25514909]
[http://dx.doi.org/10.2174/1574887109666141216102458] [PMID: 25514909]
[158]
Romacho, T.; Sánchez-Ferrer, C.F.; Peiró, C. Visfatin/Nampt: an adipokine with cardiovascular impact. Mediators Inflamm., 2013.2013946427
[http://dx.doi.org/10.1155/2013/946427] [PMID: 23843684]
[http://dx.doi.org/10.1155/2013/946427] [PMID: 23843684]
[159]
Adeghate, E. Visfatin: structure, function and relation to diabetes mellitus and other dysfunctions. Curr. Med. Chem., 2008, 15(18), 1851-1862.
[http://dx.doi.org/10.2174/092986708785133004] [PMID: 18691043]
[http://dx.doi.org/10.2174/092986708785133004] [PMID: 18691043]
[160]
Lee, J.O.; Kim, N.; Lee, H.J.; Lee, Y.W.; Kim, J.K.; Kim, H.I.; Lee, S.K.; Kim, S.J.; Park, S.H.; Kim, H.S. Visfatin, a novel adipokine, stimulates glucose uptake through the Ca2 +-dependent AMPK-p38 MAPK pathway in C2C12 skeletal muscle cells. J. Mol. Endocrinol., 2015, 54(3), 251-262.
[http://dx.doi.org/10.1530/JME-14-0274] [PMID: 26019302]
[http://dx.doi.org/10.1530/JME-14-0274] [PMID: 26019302]
[161]
Brown, J.E.; Onyango, D.J.; Ramanjaneya, M.; Conner, A.C.; Patel, S.T.; Dunmore, S.J.; Randeva, H.S. Visfatin regulates insulin secretion, insulin receptor signalling and mRNA expression of diabetes-related genes in mouse pancreatic beta-cells. J. Mol. Endocrinol., 2010, 44(3), 171-178.
[http://dx.doi.org/10.1677/JME-09-0071] [PMID: 19906834]
[http://dx.doi.org/10.1677/JME-09-0071] [PMID: 19906834]
[162]
Kim, D.S.; Kang, S.; Moon, N.R.; Park, S. Central visfatin potentiates glucose-stimulated insulin secretion and β-cell mass without increasing serum visfatin levels in diabetic rats. Cytokine, 2014, 65(2), 159-166.
[http://dx.doi.org/10.1016/j.cyto.2013.11.008] [PMID: 24332931]
[http://dx.doi.org/10.1016/j.cyto.2013.11.008] [PMID: 24332931]
[163]
Kieswich, J.; Sayers, S.R.; Silvestre, M.F.; Harwood, S.M.; Yaqoob, M.M.; Caton, P.W. Monomeric eNAMPT in the development of experimental diabetes in mice: a potential target for type 2 diabetes treatment. Diabetologia, 2016, 59(11), 2477-2486.
[http://dx.doi.org/10.1007/s00125-016-4076-3] [PMID: 27541013]
[http://dx.doi.org/10.1007/s00125-016-4076-3] [PMID: 27541013]
[164]
Chang, Y.H.; Chang, D.M.; Lin, K.C.; Shin, S.J.; Lee, Y.J. Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: a meta-analysis and systemic review. Diabetes Metab. Res. Rev., 2011, 27(6), 515-527.
[http://dx.doi.org/10.1002/dmrr.1201] [PMID: 21484978]
[http://dx.doi.org/10.1002/dmrr.1201] [PMID: 21484978]
[165]
Jurdana, M.; Petelin, A.; Bizjak, M.Č.; Bizjak, M.; Biolo, G.; Jenko-Pražnikar, Z. Increased serum visfatin levels in obesity and its association with anthropometric/biochemical parameters, physical inactivity and nutrition. ESPEN J., 2013, 8(2), e59-e67.
[166]
Legakis, I.; Mantzouridis, T.; Bouboulis, G.; Chrousos, G.P. Reciprocal changes of serum adispin and visfatin levels in patients with type 2 diabetes after an overnight fast. Arch. Endocrinol. Metab., 2016, 60(1), 76-78.
[http://dx.doi.org/10.1590/2359-3997000000147] [PMID: 26909486]
[http://dx.doi.org/10.1590/2359-3997000000147] [PMID: 26909486]
[167]
Ahmed, M.B.; Ismail, M.I.; Meki, A.R. Relation of Osteoprotegerin, Visfatin and Ghrelin to Metabolic Syndrome in Type 2 Diabetic Patients. Int. J. Health Sci. (Qassim), 2015, 9(2), 127-139.
[http://dx.doi.org/10.12816/0024107] [PMID: 26309431]
[http://dx.doi.org/10.12816/0024107] [PMID: 26309431]
[168]
Pagano, C.; Pilon, C.; Olivieri, M.; Mason, P.; Fabris, R.; Serra, R.; Milan, G.; Rossato, M.; Federspil, G.; Vettor, R. Reduced plasma visfatin/pre-B cell colony-enhancing factor in obesity is not related to insulin resistance in humans. J. Clin. Endocrinol. Metab., 2006, 91(8), 3165-3170.
[http://dx.doi.org/10.1210/jc.2006-0361] [PMID: 16720654]
[http://dx.doi.org/10.1210/jc.2006-0361] [PMID: 16720654]
[169]
Hosseinzadeh-Attar, M.J.; Golpaie, A.; Foroughi, M.; Hosseinpanah, F.; Zahediasl, S.; Azizi, F. The relationship between visfatin and serum concentrations of C-reactive protein, interleukin 6 in patients with metabolic syndrome. J. Endocrinol. Invest., 2016, 39(8), 917-922.
[http://dx.doi.org/10.1007/s40618-016-0457-1] [PMID: 27023106]
[http://dx.doi.org/10.1007/s40618-016-0457-1] [PMID: 27023106]
[170]
Böttcher, Y.; Teupser, D.; Enigk, B.; Berndt, J.; Klöting, N.; Schön, M.R.; Thiery, J.; Blüher, M.; Stumvoll, M.; Kovacs, P. Genetic variation in the visfatin gene (PBEF1) and its relation to glucose metabolism and fat-depot-specific messenger ribonucleic acid expression in humans. J. Clin. Endocrinol. Metab., 2006, 91(7), 2725-2731.
[http://dx.doi.org/10.1210/jc.2006-0149] [PMID: 16636125]
[http://dx.doi.org/10.1210/jc.2006-0149] [PMID: 16636125]
[171]
Zhang, Y.Y.; Gottardo, L.; Thompson, R.; Powers, C.; Nolan, D.; Duffy, J.; Marescotti, M.C.; Avogaro, A.; Doria, A. A visfatin promoter polymorphism is associated with low-grade inflammation and type 2 diabetes. Obesity (Silver Spring), 2006, 14(12), 2119-2126.
[http://dx.doi.org/10.1038/oby.2006.247] [PMID: 17189536]
[http://dx.doi.org/10.1038/oby.2006.247] [PMID: 17189536]
[172]
Motawi, T.M.; Shaker, O.G.; El-Sawalhi, M.M.; Abdel-Nasser, Z.M. Visfatin -948G/T and resistin -420C/G polymorphisms
in Egyptian type 2 diabetic patients with and
without cardiovascular diseases. Genome / National Research
Council Canada = Genome / Conseil national de recherches
Canada, 2014, 57(5), 259-266.
[173]
Steppan, C.M.; Bailey, S.T.; Bhat, S.; Brown, E.J.; Banerjee, R.R.; Wright, C.M.; Patel, H.R.; Ahima, R.S.; Lazar, M.A. The hormone resistin links obesity to diabetes. Nature, 2001, 409(6818), 307-312.
[http://dx.doi.org/10.1038/35053000] [PMID: 11201732]
[http://dx.doi.org/10.1038/35053000] [PMID: 11201732]
[174]
Holcomb, I.N.; Kabakoff, R.C.; Chan, B.; Baker, T.W.; Gurney, A.; Henzel, W.; Nelson, C.; Lowman, H.B.; Wright, B.D.; Skelton, N.J.; Frantz, G.D.; Tumas, D.B.; Peale, F.V., Jr; Shelton, D.L.; Hébert, C.C. FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family. EMBO J., 2000, 19(15), 4046-4055.
[http://dx.doi.org/10.1093/emboj/19.15.4046] [PMID: 10921885]
[http://dx.doi.org/10.1093/emboj/19.15.4046] [PMID: 10921885]
[175]
Del Arco, A.; Peralta, S.; Carrascosa, J.M.; Ros, M.; Andrés, A.; Arribas, C. Alternative splicing generates a novel non-secretable resistin isoform in Wistar rats. FEBS Lett., 2003, 555(2), 243-249.
[http://dx.doi.org/10.1016/S0014-5793(03)01241-9] [PMID: 14644422]
[http://dx.doi.org/10.1016/S0014-5793(03)01241-9] [PMID: 14644422]
[176]
Kim, K.H.; Lee, K.; Moon, Y.S.; Sul, H.S. A cysteine-rich adipose tissue-specific secretory factor inhibits adipocyte differentiation. J. Biol. Chem., 2001, 276(14), 11252-11256.
[http://dx.doi.org/10.1074/jbc.C100028200] [PMID: 11278254]
[http://dx.doi.org/10.1074/jbc.C100028200] [PMID: 11278254]
[177]
Ghosh, S.; Singh, A.K.; Aruna, B.; Mukhopadhyay, S.; Ehtesham, N.Z. The genomic organization of mouse resistin reveals major differences from the human resistin: functional implications. Gene, 2003, 305(1), 27-34.
[http://dx.doi.org/10.1016/S0378-1119(02)01213-1] [PMID: 12594039]
[http://dx.doi.org/10.1016/S0378-1119(02)01213-1] [PMID: 12594039]
[178]
Patel, S.D.; Rajala, M.W.; Rossetti, L.; Scherer, P.E.; Shapiro, L. Disulfide-dependent multimeric assembly of resistin family hormones. Science, 2004, 304(5674), 1154-1158.
[http://dx.doi.org/10.1126/science.1093466] [PMID: 15155948]
[http://dx.doi.org/10.1126/science.1093466] [PMID: 15155948]
[179]
Raghu, P.; Ghosh, S.; Soundarya, K.; Haseeb, A.; Aruna, B.; Ehtesham, N.Z. Dimerization of human recombinant resistin involves covalent and noncovalent interactions. Biochem. Biophys. Res. Commun., 2004, 313(3), 642-646.
[http://dx.doi.org/10.1016/j.bbrc.2003.11.156] [PMID: 14697240]
[http://dx.doi.org/10.1016/j.bbrc.2003.11.156] [PMID: 14697240]
[180]
Patel, L.; Buckels, A.C.; Kinghorn, I.J.; Murdock, P.R.; Holbrook, J.D.; Plumpton, C.; Macphee, C.H.; Smith, S.A. Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem. Biophys. Res. Commun., 2003, 300(2), 472-476.
[http://dx.doi.org/10.1016/S0006-291X(02)02841-3] [PMID: 12504108]
[http://dx.doi.org/10.1016/S0006-291X(02)02841-3] [PMID: 12504108]
[181]
Daquinag, A.C.; Zhang, Y.; Amaya-Manzanares, F.; Simmons, P.J.; Kolonin, M.G. An isoform of decorin is a resistin receptor on the surface of adipose progenitor cells. Cell Stem Cell, 2011, 9(1), 74-86.
[http://dx.doi.org/10.1016/j.stem.2011.05.017] [PMID: 21683670]
[http://dx.doi.org/10.1016/j.stem.2011.05.017] [PMID: 21683670]
[182]
Sánchez-Solana, B.; Laborda, J.; Baladrón, V. Mouse resistin modulates adipogenesis and glucose uptake in 3T3-L1 preadipocytes through the ROR1 receptor. Mol. Endocrinol., 2012, 26(1), 110-127.
[http://dx.doi.org/10.1210/me.2011-1027] [PMID: 22074948]
[http://dx.doi.org/10.1210/me.2011-1027] [PMID: 22074948]
[183]
Lee, S.; Lee, H.C.; Kwon, Y.W.; Lee, S.E.; Cho, Y.; Kim, J.; Lee, S.; Kim, J.Y.; Lee, J.; Yang, H.M.; Mook-Jung, I.; Nam, K.Y.; Chung, J.; Lazar, M.A.; Kim, H.S. Adenylyl cyclase-associated protein 1 is a receptor for human resistin and mediates inflammatory actions of human monocytes. Cell Metab., 2014, 19(3), 484-497.
[http://dx.doi.org/10.1016/j.cmet.2014.01.013] [PMID: 24606903]
[http://dx.doi.org/10.1016/j.cmet.2014.01.013] [PMID: 24606903]
[184]
Steppan, C.M.; Brown, E.J.; Wright, C.M.; Bhat, S.; Banerjee, R.R.; Dai, C.Y.; Enders, G.H.; Silberg, D.G.; Wen, X.; Wu, G.D.; Lazar, M.A. A family of tissue-specific resistin-like molecules. Proc. Natl. Acad. Sci. USA, 2001, 98(2), 502-506.
[http://dx.doi.org/10.1073/pnas.98.2.502] [PMID: 11209052]
[http://dx.doi.org/10.1073/pnas.98.2.502] [PMID: 11209052]
[185]
Rajala, M.W.; Obici, S.; Scherer, P.E.; Rossetti, L. Adipose-derived resistin and gut-derived resistin-like molecule-beta selectively impair insulin action on glucose production. J. Clin. Invest., 2003, 111(2), 225-230.
[http://dx.doi.org/10.1172/JCI16521] [PMID: 12531878]
[http://dx.doi.org/10.1172/JCI16521] [PMID: 12531878]
[186]
Satoh, H.; Nguyen, M.T.; Miles, P.D.; Imamura, T.; Usui, I.; Olefsky, J.M. Adenovirus-mediated chronic “hyper-resistinemia” leads to in vivo insulin resistance in normal rats. J. Clin. Invest., 2004, 114(2), 224-231.
[http://dx.doi.org/10.1172/JCI20785] [PMID: 15254589]
[http://dx.doi.org/10.1172/JCI20785] [PMID: 15254589]
[187]
Pravenec, M.; Kazdová, L.; Landa, V.; Zidek, V.; Mlejnek, P.; Jansa, P.; Wang, J.; Qi, N.; Kurtz, T.W. Transgenic and recombinant resistin impair skeletal muscle glucose metabolism in the spontaneously hypertensive rat. J. Biol. Chem., 2003, 278(46), 45209-45215.
[http://dx.doi.org/10.1074/jbc.M304869200] [PMID: 12944409]
[http://dx.doi.org/10.1074/jbc.M304869200] [PMID: 12944409]
[188]
Rangwala, S.M.; Rich, A.S.; Rhoades, B.; Shapiro, J.S.; Obici, S.; Rossetti, L.; Lazar, M.A. Abnormal glucose homeostasis due to chronic hyperresistinemia. Diabetes, 2004, 53(8), 1937-1941.
[http://dx.doi.org/10.2337/diabetes.53.8.1937] [PMID: 15189975]
[http://dx.doi.org/10.2337/diabetes.53.8.1937] [PMID: 15189975]
[189]
Banerjee, R.R.; Rangwala, S.M.; Shapiro, J.S.; Rich, A.S.; Rhoades, B.; Qi, Y.; Wang, J.; Rajala, M.W.; Pocai, A.; Scherer, P.E.; Steppan, C.M.; Ahima, R.S.; Obici, S.; Rossetti, L.; Lazar, M.A. Regulation of fasted blood glucose by resistin. Science, 2004, 303(5661), 1195-1198.
[http://dx.doi.org/10.1126/science.1092341] [PMID: 14976316]
[http://dx.doi.org/10.1126/science.1092341] [PMID: 14976316]
[190]
Muse, E.D.; Obici, S.; Bhanot, S.; Monia, B.P.; McKay, R.A.; Rajala, M.W.; Scherer, P.E.; Rossetti, L. Role of resistin in diet-induced hepatic insulin resistance. J. Clin. Invest., 2004, 114(2), 232-239.
[http://dx.doi.org/10.1172/JCI200421270] [PMID: 15254590]
[http://dx.doi.org/10.1172/JCI200421270] [PMID: 15254590]
[191]
Kim, K.H.; Zhao, L.; Moon, Y.; Kang, C.; Sul, H.S. Dominant inhibitory adipocyte-specific secretory factor (ADSF)/resistin enhances adipogenesis and improves insulin sensitivity. Proc. Natl. Acad. Sci. USA, 2004, 101(17), 6780-6785.
[http://dx.doi.org/10.1073/pnas.0305905101] [PMID: 15090646]
[http://dx.doi.org/10.1073/pnas.0305905101] [PMID: 15090646]
[192]
Rajala, M.W.; Qi, Y.; Patel, H.R.; Takahashi, N.; Banerjee, R.; Pajvani, U.B.; Sinha, M.K.; Gingerich, R.L.; Scherer, P.E.; Ahima, R.S. Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting. Diabetes, 2004, 53(7), 1671-1679.
[http://dx.doi.org/10.2337/diabetes.53.7.1671] [PMID: 15220189]
[http://dx.doi.org/10.2337/diabetes.53.7.1671] [PMID: 15220189]
[193]
Park, H.K.; Ahima, R.S. Resistin in rodents and humans. Diabetes Metab. J., 2013, 37(6), 404-414.
[http://dx.doi.org/10.4093/dmj.2013.37.6.404] [PMID: 24404511]
[http://dx.doi.org/10.4093/dmj.2013.37.6.404] [PMID: 24404511]
[194]
Al Hannan, F.; Culligan, K.G. Human resistin and the RELM of Inflammation in diabesity. Diabetol. Metab. Syndr., 2015, 7, 54.
[http://dx.doi.org/10.1186/s13098-015-0050-3] [PMID: 26097512]
[http://dx.doi.org/10.1186/s13098-015-0050-3] [PMID: 26097512]
[195]
Lehrke, M.; Reilly, M.P.; Millington, S.C.; Iqbal, N.; Rader, D.J.; Lazar, M.A. An inflammatory cascade leading to hyperresistinemia in humans. PLoS Med., 2004, 1(2)e45
[http://dx.doi.org/10.1371/journal.pmed.0010045] [PMID: 15578112]
[http://dx.doi.org/10.1371/journal.pmed.0010045] [PMID: 15578112]
[196]
Kunnari, A.M.; Savolainen, E.R.; Ukkola, O.H.; Kesäniemi, Y.A.; Jokela, M.A. The expression of human resistin in different leucocyte lineages is modulated by LPS and TNFalpha. Regul. Pept., 2009, 157(1-3), 57-63.
[http://dx.doi.org/10.1016/j.regpep.2009.05.002] [PMID: 19445973]
[http://dx.doi.org/10.1016/j.regpep.2009.05.002] [PMID: 19445973]
[197]
Silswal, N.; Singh, A.K.; Aruna, B.; Mukhopadhyay, S.; Ghosh, S.; Ehtesham, N.Z. Human resistin stimulates the pro-inflammatory cytokines TNF-alpha and IL-12 in macrophages by NF-kappaB-dependent pathway. Biochem. Biophys. Res. Commun., 2005, 334(4), 1092-1101.
[http://dx.doi.org/10.1016/j.bbrc.2005.06.202] [PMID: 16039994]
[http://dx.doi.org/10.1016/j.bbrc.2005.06.202] [PMID: 16039994]
[198]
Hotamisligil, G.S. Inflammation and metabolic disorders. Nature, 2006, 444(7121), 860-867.
[http://dx.doi.org/10.1038/nature05485] [PMID: 17167474]
[http://dx.doi.org/10.1038/nature05485] [PMID: 17167474]
[199]
Degawa-Yamauchi, M.; Bovenkerk, J.E.; Juliar, B.E.; Watson, W.; Kerr, K.; Jones, R.; Zhu, Q.; Considine, R.V. Serum resistin (FIZZ3) protein is increased in obese humans. J. Clin. Endocrinol. Metab., 2003, 88(11), 5452-5455.
[http://dx.doi.org/10.1210/jc.2002-021808] [PMID: 14602788]
[http://dx.doi.org/10.1210/jc.2002-021808] [PMID: 14602788]
[200]
Silha, J.V.; Krsek, M.; Skrha, J.V.; Sucharda, P.; Nyomba, B.L.; Murphy, L.J. Plasma resistin, adiponectin and leptin
levels in lean and obese subjects: correlations with insulin
resistance. European journal of endocrinology / European
Federation of Endocrine Societies, 2003, 149(4), 331-335.
[http://dx.doi.org/10.1530/eje.0.1490331]
[http://dx.doi.org/10.1530/eje.0.1490331]
[201]
Hasegawa, G.; Ohta, M.; Ichida, Y.; Obayashi, H.; Shigeta, M.; Yamasaki, M.; Fukui, M.; Yoshikawa, T.; Nakamura, N. Increased serum resistin levels in patients with type 2 diabetes are not linked with markers of insulin resistance and adiposity. Acta Diabetol., 2005, 42(2), 104-109.
[http://dx.doi.org/10.1007/s00592-005-0187-x] [PMID: 15944845]
[http://dx.doi.org/10.1007/s00592-005-0187-x] [PMID: 15944845]
[202]
Heilbronn, L.K.; Rood, J.; Janderova, L.; Albu, J.B.; Kelley, D.E.; Ravussin, E.; Smith, S.R. Relationship between serum resistin concentrations and insulin resistance in nonobese, obese, and obese diabetic subjects. J. Clin. Endocrinol. Metab., 2004, 89(4), 1844-1848.
[http://dx.doi.org/10.1210/jc.2003-031410] [PMID: 15070954]
[http://dx.doi.org/10.1210/jc.2003-031410] [PMID: 15070954]
[203]
Lee, J.H.; Chan, J.L.; Yiannakouris, N.; Kontogianni, M.; Estrada, E.; Seip, R.; Orlova, C.; Mantzoros, C.S. Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects. J. Clin. Endocrinol. Metab., 2003, 88(10), 4848-4856.
[http://dx.doi.org/10.1210/jc.2003-030519] [PMID: 14557464]
[http://dx.doi.org/10.1210/jc.2003-030519] [PMID: 14557464]
[204]
Gharibeh, M.Y.; Al Tawallbeh, G.M.; Abboud, M.M.; Radaideh, A.; Alhader, A.A.; Khabour, O.F. Correlation of plasma resistin with obesity and insulin resistance in type 2 diabetic patients. Diabetes Metab., 2010, 36(6 Pt 1), 443-449.
[http://dx.doi.org/10.1016/j.diabet.2010.05.003] [PMID: 20739208]
[http://dx.doi.org/10.1016/j.diabet.2010.05.003] [PMID: 20739208]
[205]
Osawa, H.; Onuma, H.; Ochi, M.; Murakami, A.; Yamauchi, J.; Takasuka, T.; Tanabe, F.; Shimizu, I.; Kato, K.; Nishida, W.; Yamada, K.; Tabara, Y.; Yasukawa, M.; Fujii, Y.; Ohashi, J.; Miki, T.; Makino, H. Resistin SNP-420 determines its monocyte mRNA and serum levels inducing type 2 diabetes. Biochem. Biophys. Res. Commun., 2005, 335(2), 596-602.
[http://dx.doi.org/10.1016/j.bbrc.2005.07.122] [PMID: 16087164]
[http://dx.doi.org/10.1016/j.bbrc.2005.07.122] [PMID: 16087164]
[206]
Osawa, H.; Yamada, K.; Onuma, H.; Murakami, A.; Ochi, M.; Kawata, H.; Nishimiya, T.; Niiya, T.; Shimizu, I.; Nishida, W.; Hashiramoto, M.; Kanatsuka, A.; Fujii, Y.; Ohashi, J.; Makino, H. The G/G genotype of a resistin single-nucleotide polymorphism at -420 increases type 2 diabetes mellitus susceptibility by inducing promoter activity through specific binding of Sp1/3. Am. J. Hum. Genet., 2004, 75(4), 678-686.
[http://dx.doi.org/10.1086/424761] [PMID: 15338456]
[http://dx.doi.org/10.1086/424761] [PMID: 15338456]
[207]
Osawa, H.; Tabara, Y.; Kawamoto, R.; Ohashi, J.; Ochi, M.; Onuma, H.; Nishida, W.; Yamada, K.; Nakura, J.; Kohara, K.; Miki, T.; Makino, H. Plasma resistin, associated with single nucleotide polymorphism -420, is correlated with insulin resistance, lower HDL cholesterol, and high-sensitivity C-reactive protein in the Japanese general population. Diabetes Care, 2007, 30(6), 1501-1506.
[http://dx.doi.org/10.2337/dc06-1936] [PMID: 17384338]
[http://dx.doi.org/10.2337/dc06-1936] [PMID: 17384338]
[208]
Cho, Y.M.; Youn, B.S.; Chung, S.S.; Kim, K.W.; Lee, H.K.; Yu, K.Y.; Park, H.J.; Shin, H.D.; Park, K.S. Common genetic polymorphisms in the promoter of resistin gene are major determinants of plasma resistin concentrations in humans. Diabetologia, 2004, 47(3), 559-565.
[http://dx.doi.org/10.1007/s00125-003-1319-x] [PMID: 14740159]
[http://dx.doi.org/10.1007/s00125-003-1319-x] [PMID: 14740159]
[209]
Wen, Y.; Lu, P.; Dai, L. Association between resistin gene -420 C/G polymorphism and the risk of type 2 diabetes mellitus: a meta-analysis. Acta Diabetol., 2013, 50(2), 267-272.
[http://dx.doi.org/10.1007/s00592-010-0247-8] [PMID: 21190046]
[http://dx.doi.org/10.1007/s00592-010-0247-8] [PMID: 21190046]
[210]
El-Shal, A.S.; Pasha, H.F.; Rashad, N.M. Association of resistin gene polymorphisms with insulin resistance in Egyptian obese patients. Gene, 2013, 515(1), 233-238.
[http://dx.doi.org/10.1016/j.gene.2012.09.136] [PMID: 23178185]
[http://dx.doi.org/10.1016/j.gene.2012.09.136] [PMID: 23178185]
[211]
Naylor, C.; Petri, W.A. Jr Leptin Regulation of Immune Responses. Trends Mol. Med., 2016, 22(2), 88-98.
[http://dx.doi.org/10.1016/j.molmed.2015.12.001] [PMID: 26776093]
[http://dx.doi.org/10.1016/j.molmed.2015.12.001] [PMID: 26776093]
[212]
Hall, M.E.; Smith, G.; Hall, J.E.; Stec, D.E. Cardiomyocyte-specific deletion of leptin receptors causes lethal heart failure in Cre-recombinase-mediated cardiotoxicity. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2012, 303(12), R1241-R1250.
[http://dx.doi.org/10.1152/ajpregu.00292.2012] [PMID: 23115124]
[http://dx.doi.org/10.1152/ajpregu.00292.2012] [PMID: 23115124]
[213]
Celik, O.; Aydin, S.; Celik, N.; Yilmaz, M. Peptides: Basic determinants of reproductive functions. Peptides, 2015, 72, 34-43.
[http://dx.doi.org/10.1016/j.peptides.2015.05.016] [PMID: 26074346]
[http://dx.doi.org/10.1016/j.peptides.2015.05.016] [PMID: 26074346]
[214]
Ghantous, C.M.; Azrak, Z.; Hanache, S.; Abou-Kheir, W.; Zeidan, A. Differential Role of Leptin and Adiponectin in Cardiovascular System. Int. J. Endocrinol., 2015.2015534320
[http://dx.doi.org/10.1155/2015/534320] [PMID: 26064110]
[http://dx.doi.org/10.1155/2015/534320] [PMID: 26064110]
[215]
Srikanthan, K.; Feyh, A.; Visweshwar, H.; Shapiro, J.I.; Sodhi, K. Systematic Review of Metabolic Syndrome Biomarkers: A Panel for Early Detection, Management, and Risk Stratification in the West Virginian Population. Int. J. Med. Sci., 2016, 13(1), 25-38.
[http://dx.doi.org/10.7150/ijms.13800] [PMID: 26816492]
[http://dx.doi.org/10.7150/ijms.13800] [PMID: 26816492]
[216]
Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue. Nature, 1994, 372(6505), 425-432.
[http://dx.doi.org/10.1038/372425a0] [PMID: 7984236]
[http://dx.doi.org/10.1038/372425a0] [PMID: 7984236]
[217]
Halaas, J.L.; Gajiwala, K.S.; Maffei, M.; Cohen, S.L.; Chait, B.T.; Rabinowitz, D.; Lallone, R.L.; Burley, S.K.; Friedman, J.M. Weight-reducing effects of the plasma protein encoded by the obese gene. Science, 1995, 269(5223), 543-546.
[http://dx.doi.org/10.1126/science.7624777] [PMID: 7624777]
[http://dx.doi.org/10.1126/science.7624777] [PMID: 7624777]
[218]
Friedman, J.M.; Halaas, J.L. Leptin and the regulation of body weight in mammals. Nature, 1998, 395(6704), 763-770.
[http://dx.doi.org/10.1038/27376] [PMID: 9796811]
[http://dx.doi.org/10.1038/27376] [PMID: 9796811]
[219]
Cottrell, E.C.; Mercer, J.G. Leptin receptors. Handb. Exp. Pharmacol., 2012, (209), 3-21.
[http://dx.doi.org/10.1007/978-3-642-24716-3_1] [PMID: 22249808]
[http://dx.doi.org/10.1007/978-3-642-24716-3_1] [PMID: 22249808]
[220]
Zhang, Z.Y.; Dodd, G.T.; Tiganis, T. Protein Tyrosine Phosphatases in Hypothalamic Insulin and Leptin Signaling. Trends Pharmacol. Sci., 2015, 36(10), 661-674.
[http://dx.doi.org/10.1016/j.tips.2015.07.003] [PMID: 26435211]
[http://dx.doi.org/10.1016/j.tips.2015.07.003] [PMID: 26435211]
[221]
Han, T.J.; Wang, X. Leptin and its receptor in hematologic malignancies. Int. J. Clin. Exp. Med., 2015, 8(11), 19840-19849.
[PMID: 26884894]
[PMID: 26884894]
[222]
Zhou, Y.; Rui, L. Leptin signaling and leptin resistance. Front. Med., 2013, 7(2), 207-222.
[http://dx.doi.org/10.1007/s11684-013-0263-5] [PMID: 23580174]
[http://dx.doi.org/10.1007/s11684-013-0263-5] [PMID: 23580174]
[223]
Tartaglia, L.A.; Dembski, M.; Weng, X.; Deng, N.; Culpepper, J.; Devos, R.; Richards, G.J.; Campfield, L.A.; Clark, F.T.; Deeds, J.; Muir, C.; Sanker, S.; Moriarty, A.; Moore, K.J.; Smutko, J.S.; Mays, G.G.; Wool, E.A.; Monroe, C.A.; Tepper, R.I. Identification and expression cloning of a leptin receptor, OB-R. Cell, 1995, 83(7), 1263-1271.
[http://dx.doi.org/10.1016/0092-8674(95)90151-5] [PMID: 8548812]
[http://dx.doi.org/10.1016/0092-8674(95)90151-5] [PMID: 8548812]
[224]
Wasim, M.; Awan, F.R.; Najam, S.S.; Khan, A.R.; Khan, H.N. Role of Leptin Deficiency, Inefficiency, and Leptin Receptors in Obesity. Biochem. Genet., 2016, 54(5), 565-572.
[http://dx.doi.org/10.1007/s10528-016-9751-z] [PMID: 27313173]
[http://dx.doi.org/10.1007/s10528-016-9751-z] [PMID: 27313173]
[225]
Clément, K.; Vaisse, C.; Lahlou, N.; Cabrol, S.; Pelloux, V.; Cassuto, D.; Gourmelen, M.; Dina, C.; Chambaz, J.; Lacorte, J.M.; Basdevant, A.; Bougnères, P.; Lebouc, Y.; Froguel, P.; Guy-Grand, B. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature, 1998, 392(6674), 398-401.
[http://dx.doi.org/10.1038/32911] [PMID: 9537324]
[http://dx.doi.org/10.1038/32911] [PMID: 9537324]
[226]
Isse, N.; Ogawa, Y.; Tamura, N.; Masuzaki, H.; Mori, K.; Okazaki, T.; Satoh, N.; Shigemoto, M.; Yoshimasa, Y.; Nishi, S. Structural organization and chromosomal assignment of the human obese gene. J. Biol. Chem., 1995, 270(46), 27728-27733.
[http://dx.doi.org/10.1074/jbc.270.46.27728] [PMID: 7499240]
[http://dx.doi.org/10.1074/jbc.270.46.27728] [PMID: 7499240]
[227]
Houseknecht, K.L.; Portocarrero, C.P. Leptin and its receptors: regulators of whole-body energy homeostasis. Domest. Anim. Endocrinol., 1998, 15(6), 457-475.
[http://dx.doi.org/10.1016/S0739-7240(98)00035-6] [PMID: 9861538]
[http://dx.doi.org/10.1016/S0739-7240(98)00035-6] [PMID: 9861538]
[228]
Meshkani, R.; Nasimian, A.; Taheripak, G.; Zarghooni, M.; Rezaei, M.; Sadeghi, A.; Eshkiki, Z.S. Association between Leptin G2548A and Leptin Receptor Q223R Polymorphisms with Type 2 Diabetes in an Iranian Population. Clin. Lab., 2016, 62(1-2), 89-96.
[http://dx.doi.org/10.7754/Clin.Lab.2015.150535] [PMID: 27012037]
[http://dx.doi.org/10.7754/Clin.Lab.2015.150535] [PMID: 27012037]
[229]
An, B.Q.; Lu, L.L.; Yuan, C.; Xin, Y.N.; Xuan, S.Y. Leptin Receptor Gene Polymorphisms and the Risk of Non-Alcoholic Fatty Liver Disease and Coronary Atherosclerosis in the Chinese Han Population. Hepat. Mon., 2016, 16(4)e35055
[http://dx.doi.org/10.5812/hepatmon.35055] [PMID: 27257426]
[http://dx.doi.org/10.5812/hepatmon.35055] [PMID: 27257426]
[230]
Tartaglia, L.A. The leptin receptor. J. Biol. Chem., 1997, 272(10), 6093-6096.
[http://dx.doi.org/10.1074/jbc.272.10.6093] [PMID: 9102398]
[http://dx.doi.org/10.1074/jbc.272.10.6093] [PMID: 9102398]
[231]
Kurajoh, M.; Koyama, H.; Kadoya, M.; Naka, M.; Miyoshi, A.; Kanzaki, A.; Kakutani-Hatayama, M.; Okazaki, H.; Shoji, T.; Moriwaki, Y.; Yamamoto, T.; Emoto, M.; Inaba, M.; Namba, M. Plasma leptin level is associated with cardiac autonomic dysfunction in patients with type 2 diabetes: HSCAA study. Cardiovasc. Diabetol., 2015, 14, 117.
[http://dx.doi.org/10.1186/s12933-015-0280-6] [PMID: 26338087]
[http://dx.doi.org/10.1186/s12933-015-0280-6] [PMID: 26338087]
[232]
Umeno, A.; Yoshino, K.; Hashimoto, Y.; Shichiri, M.; Kataoka, M.; Yoshida, Y. Multi-Biomarkers for Early Detection of Type 2 Diabetes, Including 10- and 12-(Z,E)-Hydroxyoctadecadienoic Acids, Insulin, Leptin, and Adiponectin. PLoS One, 2015, 10(7)e0130971
[http://dx.doi.org/10.1371/journal.pone.0130971] [PMID: 26132231]
[http://dx.doi.org/10.1371/journal.pone.0130971] [PMID: 26132231]
[233]
Bhaktha, G.; Nayak, S.; Shantaram, M. Assessment of biomarkers in type 2 diabetic subjects without any complications. Diabetes Metab. Syndr., 2016, 10(1), 1-3.
[http://dx.doi.org/10.1016/j.dsx.2015.08.014] [PMID: 26375580]
[http://dx.doi.org/10.1016/j.dsx.2015.08.014] [PMID: 26375580]
[234]
Nowak, C.; Sundström, J.; Gustafsson, S.; Giedraitis, V.; Lind, L.; Ingelsson, E.; Fall, T. Protein Biomarkers for Insulin Resistance and Type 2 Diabetes Risk in Two Large Community Cohorts. Diabetes, 2016, 65(1), 276-284.
[PMID: 26420861]
[PMID: 26420861]
[235]
Zuo, H.; Shi, Z.; Yuan, B.; Dai, Y.; Wu, G.; Hussain, A. Association between serum leptin concentrations and insulin resistance: a population-based study from China. PLoS One, 2013, 8(1)e54615
[http://dx.doi.org/10.1371/journal.pone.0054615] [PMID: 23349940]
[http://dx.doi.org/10.1371/journal.pone.0054615] [PMID: 23349940]
[236]
Neville, C.E.; Patterson, C.C.; Linden, G.J.; Love, K.; McKinley, M.C.; Kee, F.; Blankenberg, S.; Evans, A.; Yarnell, J.; Woodside, J.V. The relationship between adipokines and the onset of type 2 diabetes in middle-aged men: The PRIME study. Diabetes Res. Clin. Pract., 2016, 120, 24-30.
[http://dx.doi.org/10.1016/j.diabres.2016.07.010] [PMID: 27500548]
[http://dx.doi.org/10.1016/j.diabres.2016.07.010] [PMID: 27500548]
[237]
Kumagai, S.; Kishimoto, H. Masatakasuwa; Zou, B.; Harukasasaki, The leptin to adiponectin ratio is a good biomarker for the prevalence of metabolic syndrome, dependent on visceral fat accumulation and endurance fitness in obese patients with diabetes mellitus. Metab. Syndr. Relat. Disord., 2005, 3(2), 85-94.
[http://dx.doi.org/10.1089/met.2005.3.85] [PMID: 18370715]
[http://dx.doi.org/10.1089/met.2005.3.85] [PMID: 18370715]
[238]
Brink, H.S.; van der Lely, A.J.; van der Linden, J. The potential role of biomarkers in predicting gestational diabetes. Endocr. Connect., 2016, 5(5), R26-R34.
[http://dx.doi.org/10.1530/EC-16-0033] [PMID: 27492245]
[http://dx.doi.org/10.1530/EC-16-0033] [PMID: 27492245]
[239]
Wang, M.Y.; Chen, L.; Clark, G.O.; Lee, Y.; Stevens, R.D.; Ilkayeva, O.R.; Wenner, B.R.; Bain, J.R.; Charron, M.J.; Newgard, C.B.; Unger, R.H. Leptin therapy in insulin-deficient type I diabetes. Proc. Natl. Acad. Sci. USA, 2010, 107(11), 4813-4819.
[http://dx.doi.org/10.1073/pnas.0909422107] [PMID: 20194735]
[http://dx.doi.org/10.1073/pnas.0909422107] [PMID: 20194735]
[240]
Xu, Y.; Tong, Q. Central leptin action on euglycemia restoration in type 1 diabetes: Restraining responses normally induced by fasting? Int. J. Biochem. Cell Biol., 2016.
[PMID: 27702650]
[PMID: 27702650]
[241]
Coppari, R.; Bjørbæk, C. Leptin revisited: its mechanism of action and potential for treating diabetes. Nat. Rev. Drug Discov., 2012, 11(9), 692-708.
[http://dx.doi.org/10.1038/nrd3757] [PMID: 22935803]
[http://dx.doi.org/10.1038/nrd3757] [PMID: 22935803]
[242]
Park, J.Y.; Chong, A.Y.; Cochran, E.K.; Kleiner, D.E.; Haller, M.J.; Schatz, D.A.; Gorden, P. Type 1 diabetes associated with acquired generalized lipodystrophy and insulin resistance: the effect of long-term leptin therapy. J. Clin. Endocrinol. Metab., 2008, 93(1), 26-31.
[http://dx.doi.org/10.1210/jc.2007-1856] [PMID: 17940115]
[http://dx.doi.org/10.1210/jc.2007-1856] [PMID: 17940115]
[243]
Licinio, J.; Caglayan, S.; Ozata, M.; Yildiz, B.O.; de Miranda, P.B.; O’Kirwan, F.; Whitby, R.; Liang, L.; Cohen, P.; Bhasin, S.; Krauss, R.M.; Veldhuis, J.D.; Wagner, A.J.; DePaoli, A.M.; McCann, S.M.; Wong, M.L. Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc. Natl. Acad. Sci. USA, 2004, 101(13), 4531-4536.
[http://dx.doi.org/10.1073/pnas.0308767101] [PMID: 15070752]
[http://dx.doi.org/10.1073/pnas.0308767101] [PMID: 15070752]
[244]
Cummings, B.P. Leptin therapy in type 2 diabetes. Diabetes Obes. Metab., 2013, 15(7), 607-612.
[http://dx.doi.org/10.1111/dom.12048] [PMID: 23216672]
[http://dx.doi.org/10.1111/dom.12048] [PMID: 23216672]
[245]
Fisman, E.Z.; Tenenbaum, A. Adiponectin: a manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovasc. Diabetol., 2014, 13, 103.
[http://dx.doi.org/10.1186/1475-2840-13-103] [PMID: 24957699]
[http://dx.doi.org/10.1186/1475-2840-13-103] [PMID: 24957699]
[246]
Silva, T.E.; Colombo, G.; Schiavon, L.L. Adiponectin: A multitasking player in the field of liver diseases. Diabetes Metab., 2014, 40(2), 95-107.
[http://dx.doi.org/10.1016/j.diabet.2013.11.004] [PMID: 24486145]
[http://dx.doi.org/10.1016/j.diabet.2013.11.004] [PMID: 24486145]
[247]
Whitehead, J.P.; Richards, A.A.; Hickman, I.J.; Macdonald, G.A.; Prins, J.B. Adiponectin--a key adipokine in the metabolic syndrome. Diabetes Obes. Metab., 2006, 8(3), 264-280.
[http://dx.doi.org/10.1111/j.1463-1326.2005.00510.x] [PMID: 16634986]
[http://dx.doi.org/10.1111/j.1463-1326.2005.00510.x] [PMID: 16634986]
[248]
Fu, Y.; Luo, N.; Klein, R.L.; Garvey, W.T. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J. Lipid Res., 2005, 46(7), 1369-1379.
[http://dx.doi.org/10.1194/jlr.M400373-JLR200] [PMID: 15834118]
[http://dx.doi.org/10.1194/jlr.M400373-JLR200] [PMID: 15834118]
[249]
Lara-Castro, C.; Fu, Y.; Chung, B.H.; Garvey, W.T. Adiponectin and the metabolic syndrome: mechanisms mediating risk for metabolic and cardiovascular disease. Curr. Opin. Lipidol., 2007, 18(3), 263-270.
[http://dx.doi.org/10.1097/MOL.0b013e32814a645f] [PMID: 17495599]
[http://dx.doi.org/10.1097/MOL.0b013e32814a645f] [PMID: 17495599]
[250]
Balsan, G.A.; Vieira, J.L.; Oliveira, A.M.; Portal, V.L. Relationship between adiponectin, obesity and insulin resistance Rev Assoc Med Bras (1992), 2015, 61(1), 72-80.
[http://dx.doi.org/10.1590/1806-9282.61.01.072] [PMID: 25909213]
[http://dx.doi.org/10.1590/1806-9282.61.01.072] [PMID: 25909213]
[251]
Yamauchi, T.; Nio, Y.; Maki, T.; Kobayashi, M.; Takazawa, T.; Iwabu, M.; Okada-Iwabu, M.; Kawamoto, S.; Kubota, N.; Kubota, T.; Ito, Y.; Kamon, J.; Tsuchida, A.; Kumagai, K.; Kozono, H.; Hada, Y.; Ogata, H.; Tokuyama, K.; Tsunoda, M.; Ide, T.; Murakami, K.; Awazawa, M.; Takamoto, I.; Froguel, P.; Hara, K.; Tobe, K.; Nagai, R.; Ueki, K.; Kadowaki, T. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat. Med., 2007, 13(3), 332-339.
[http://dx.doi.org/10.1038/nm1557] [PMID: 17268472]
[http://dx.doi.org/10.1038/nm1557] [PMID: 17268472]
[252]
Magkos, F.; Sidossis, L.S. Recent advances in the measurement of adiponectin isoform distribution. Curr. Opin. Clin. Nutr. Metab. Care, 2007, 10(5), 571-575.
[http://dx.doi.org/10.1097/MCO.0b013e3282bf6ea8] [PMID: 17693739]
[http://dx.doi.org/10.1097/MCO.0b013e3282bf6ea8] [PMID: 17693739]
[253]
Pajvani, U.B.; Hawkins, M.; Combs, T.P.; Rajala, M.W.; Doebber, T.; Berger, J.P.; Wagner, J.A.; Wu, M.; Knopps, A.; Xiang, A.H.; Utzschneider, K.M.; Kahn, S.E.; Olefsky, J.M.; Buchanan, T.A.; Scherer, P.E. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J. Biol. Chem., 2004, 279(13), 12152-12162.
[http://dx.doi.org/10.1074/jbc.M311113200] [PMID: 14699128]
[http://dx.doi.org/10.1074/jbc.M311113200] [PMID: 14699128]
[254]
Lara-Castro, C.; Luo, N.; Wallace, P.; Klein, R.L.; Garvey, W.T. Adiponectin multimeric complexes and the metabolic syndrome trait cluster. Diabetes, 2006, 55(1), 249-259.
[http://dx.doi.org/10.2337/diabetes.55.01.06.db05-1105] [PMID: 16380500]
[http://dx.doi.org/10.2337/diabetes.55.01.06.db05-1105] [PMID: 16380500]
[255]
Tsao, T.S.; Tomas, E.; Murrey, H.E.; Hug, C.; Lee, D.H.; Ruderman, N.B.; Heuser, J.E.; Lodish, H.F. Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways. J. Biol. Chem., 2003, 278(50), 50810-50817.
[http://dx.doi.org/10.1074/jbc.M309469200] [PMID: 14522956]
[http://dx.doi.org/10.1074/jbc.M309469200] [PMID: 14522956]
[256]
Lee, S.; Kwak, H.B. Role of adiponectin in metabolic and cardiovascular disease. J. Exerc. Rehabil., 2014, 10(2), 54-59.
[http://dx.doi.org/10.12965/jer.140100] [PMID: 24877038]
[http://dx.doi.org/10.12965/jer.140100] [PMID: 24877038]
[257]
Awazawa, M.; Ueki, K.; Inabe, K.; Yamauchi, T.; Kubota, N.; Kaneko, K.; Kobayashi, M.; Iwane, A.; Sasako, T.; Okazaki, Y.; Ohsugi, M.; Takamoto, I.; Yamashita, S.; Asahara, H.; Akira, S.; Kasuga, M.; Kadowaki, T. Adiponectin enhances insulin sensitivity by increasing hepatic IRS-2 expression via a macrophage-derived IL-6-dependent pathway. Cell Metab., 2011, 13(4), 401-412.
[http://dx.doi.org/10.1016/j.cmet.2011.02.010] [PMID: 21459325]
[http://dx.doi.org/10.1016/j.cmet.2011.02.010] [PMID: 21459325]
[258]
Okada-Iwabu, M.; Yamauchi, T.; Iwabu, M.; Honma, T.; Hamagami, K.; Matsuda, K.; Yamaguchi, M.; Tanabe, H.; Kimura-Someya, T.; Shirouzu, M.; Ogata, H.; Tokuyama, K.; Ueki, K.; Nagano, T.; Tanaka, A.; Yokoyama, S.; Kadowaki, T. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature, 2013, 503(7477), 493-499.
[http://dx.doi.org/10.1038/nature12656] [PMID: 24172895]
[http://dx.doi.org/10.1038/nature12656] [PMID: 24172895]
[259]
Farooq, R.; Amin, S.; Hayat Bhat, M.; Malik, R.; Wani, H.A.; Majid, S. Type 2 diabetes and metabolic syndrome - adipokine levels and effect of drugs. Gynecol. Endocrinol., 2017, 33(1), 75-78.
[http://dx.doi.org/10.1080/09513590.2016.1207165] [PMID: 27705028]
[http://dx.doi.org/10.1080/09513590.2016.1207165] [PMID: 27705028]
[260]
Andersson, D.P.; Laurencikiene, J.; Acosta, J.R.; Rydén, M.; Arner, P. Circulating and Adipose Levels of Adipokines Associated With Insulin Sensitivity in Nonobese Subjects With Type 2 Diabetes. J. Clin. Endocrinol. Metab., 2016, 101(10), 3765-3771.
[http://dx.doi.org/10.1210/jc.2016-1883] [PMID: 27501281]
[http://dx.doi.org/10.1210/jc.2016-1883] [PMID: 27501281]
[261]
Chow, W.S.; Cheung, B.M.; Tso, A.W.; Xu, A.; Wat, N.M.; Fong, C.H.; Ong, L.H.; Tam, S.; Tan, K.C.; Janus, E.D.; Lam, T.H.; Lam, K.S. Hypoadiponectinemia as a predictor for the development of hypertension: a 5-year prospective study. Hypertension, 2007, 49(6), 1455-1461.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.086835] [PMID: 17452504]
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.086835] [PMID: 17452504]
[262]
Feldman, A.; Eder, S.K.; Felder, T.K.; Kedenko, L.; Paulweber, B.; Stadlmayr, A.; Huber-Schönauer, U.; Niederseer, D.; Stickel, F.; Auer, S.; Haschke-Becher, E.; Patsch, W.; Datz, C.; Aigner, E. Clinical and Metabolic Characterization of Lean Caucasian Subjects With Non-alcoholic Fatty Liver. Clinical and Metabolic Characterization of Lean Caucasian Subjects With Non-alcoholic Fatty Liver. Am. J. Gastroenterol., 2017, 112(1), 102-110.
[http://dx.doi.org/10.1038/ajg.2016.318] [PMID: 27527746]
[http://dx.doi.org/10.1038/ajg.2016.318] [PMID: 27527746]
[263]
Kiris, I.; Tekin, I.; Yesildag, A.; Vural, H.; Oyar, O.; Sirin, B.; Okutan, H.; Ibrisim, E. Inverse relationship between adiponectin levels and subclinical carotid atherosclerosis in patients undergoing coronary artery bypass grafting. Int. Heart J., 2006, 47(6), 855-866.
[http://dx.doi.org/10.1536/ihj.47.855] [PMID: 17268120]
[http://dx.doi.org/10.1536/ihj.47.855] [PMID: 17268120]
[264]
Liu, C.; Feng, X.; Li, Q.; Wang, Y.; Li, Q.; Hua, M. Adiponectin, TNF-α and inflammatory cytokines and risk of type 2 diabetes: A systematic review and meta-analysis. Cytokine, 2016, 86, 100-109.
[http://dx.doi.org/10.1016/j.cyto.2016.06.028] [PMID: 27498215]
[http://dx.doi.org/10.1016/j.cyto.2016.06.028] [PMID: 27498215]
[265]
Lindberg, S.; Jensen, J.S.; Bjerre, M.; Frystyk, J.; Flyvbjerg, A.; Jeppesen, J.; Mogelvang, R. Low adiponectin levels at baseline and decreasing adiponectin levels over 10 years of follow-up predict risk of the metabolic syndrome. Diabetes Metab., 2016, 60(11), 2274-2284.
[PMID: 27639310]
[PMID: 27639310]
[266]
Silva, F.M.; de Almeida, J.C.; Feoli, A.M. Effect of diet on adiponectin levels in blood. Nutr. Rev., 2011, 69(10), 599-612.
[http://dx.doi.org/10.1111/j.1753-4887.2011.00414.x] [PMID: 21967160]
[http://dx.doi.org/10.1111/j.1753-4887.2011.00414.x] [PMID: 21967160]
[267]
Tripathy, D.; Clement, S.C.; Schwenke, D.C.; Banerji, M.; Bray, G.A.; Buchanan, T.A.; Gastaldelli, A.; Henry, R.R.; Kitabchi, A.E.; Mudaliar, S.; Ratner, R.E.; Stentz, F.B.; Musi, N.; Reaven, P.D.; DeFronzo, R.A. Baseline adiponectin levels do not influence the response to pioglitazone in ACT NOW. Diabetes Care, 2014, 37(6), 1706-1711.
[http://dx.doi.org/10.2337/dc13-1745] [PMID: 24705615]
[http://dx.doi.org/10.2337/dc13-1745] [PMID: 24705615]
[268]
Ida, S.; Murata, K.; Betou, K.; Kobayashi, C.; Ishihara, Y.; Imataka, K.; Uchida, A.; Monguchi, K.; Kaneko, R.; Fujiwara, R.; Takahashi, H. Effect of trelagliptin on vascular endothelial functions and serum adiponectin level in patients with type 2 diabetes: a preliminary single-arm prospective pilot study. Cardiovasc. Diabetol., 2016, 15(1), 153.
[http://dx.doi.org/10.1186/s12933-016-0468-4] [PMID: 27809903]
[http://dx.doi.org/10.1186/s12933-016-0468-4] [PMID: 27809903]
[269]
Tu, Y.; Yu, Q.; Fan, G.; Yang, P.; Lai, Q.; Yang, F.; Zhang, S.; Wang, W.; Wang, D.; Yu, X.; Wang, C.Y. Assessment of type 2 diabetes risk conferred by SNPs rs2241766 and rs1501299 in the ADIPOQ gene, a case/control study combined with meta-analyses. Mol. Cell. Endocrinol., 2014, 396(1-2), 1-9.
[http://dx.doi.org/10.1016/j.mce.2014.08.006] [PMID: 25135112]
[http://dx.doi.org/10.1016/j.mce.2014.08.006] [PMID: 25135112]
[270]
Arikoglu, H.; Ozdemir, H.; Kaya, D.E.; Ipekci, S.H.; Arslan, A.; Kayis, S.A.; Gonen, M.S. The Adiponectin variants contribute to the genetic background of type 2 diabetes in Turkish population. Gene, 2014, 534(1), 10-16.
[http://dx.doi.org/10.1016/j.gene.2013.10.039] [PMID: 24404592]
[http://dx.doi.org/10.1016/j.gene.2013.10.039] [PMID: 24404592]
[271]
Nishimura, T.; Nakatake, Y.; Konishi, M.; Itoh, N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim. Biophys. Acta, 2000, 1492(1), 203-206.
[http://dx.doi.org/10.1016/S0167-4781(00)00067-1] [PMID: 10858549]
[http://dx.doi.org/10.1016/S0167-4781(00)00067-1] [PMID: 10858549]
[272]
Kharitonenkov, A.; Shiyanova, T.L.; Koester, A.; Ford, A.M.; Micanovic, R.; Galbreath, E.J.; Sandusky, G.E.; Hammond, L.J.; Moyers, J.S.; Owens, R.A.; Gromada, J.; Brozinick, J.T.; Hawkins, E.D.; Wroblewski, V.J.; Li, D.S.; Mehrbod, F.; Jaskunas, S.R.; Shanafelt, A.B. FGF-21 as a novel metabolic regulator. J. Clin. Invest., 2005, 115(6), 1627-1635.
[http://dx.doi.org/10.1172/JCI23606] [PMID: 15902306]
[http://dx.doi.org/10.1172/JCI23606] [PMID: 15902306]
[273]
Xu, J.; Stanislaus, S.; Chinookoswong, N.; Lau, Y.Y.; Hager, T.; Patel, J.; Ge, H.; Weiszmann, J.; Lu, S.C.; Graham, M.; Busby, J.; Hecht, R.; Li, Y.S.; Li, Y.; Lindberg, R.; Véniant, M.M. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models--association with liver and adipose tissue effects. Am. J. Physiol. Endocrinol. Metab., 2009, 297(5), E1105-E1114.
[http://dx.doi.org/10.1152/ajpendo.00348.2009] [PMID: 19706786]
[http://dx.doi.org/10.1152/ajpendo.00348.2009] [PMID: 19706786]
[274]
Samms, R.J.; Lewis, J.E.; Norton, L.; Stephens, F.B.; Gaffney, C.J.; Butterfield, T.; Smith, D.P.; Cheng, C.C.; Perfield, J.W., II; Adams, A.C.; Ebling, F.J.P.; Tsintzas, K. FGF21 is an insulin-dependent postprandial hormone in adult humans. J. Clin. Endocrinol. Metab., 2017, 102(10), 3806-3813.
[http://dx.doi.org/10.1210/jc.2017-01257] [PMID: 28938434]
[http://dx.doi.org/10.1210/jc.2017-01257] [PMID: 28938434]
[275]
Strowski, M.Z. Impact of FGF21 on glycemic control. Horm. Mol. Biol. Clin. Investig, 2017, 30(2), /j/hmbci.
2017.30.issue-2/hmbci-2017-0001/hmbci-2017-0001.xml.
[http://dx.doi.org/10.1515/hmbci-2017-0001] [PMID: 28593912]
[http://dx.doi.org/10.1515/hmbci-2017-0001] [PMID: 28593912]
[276]
Kharitonenkov, A.; Wroblewski, V.J.; Koester, A.; Chen, Y.F.; Clutinger, C.K.; Tigno, X.T.; Hansen, B.C.; Shanafelt, A.B.; Etgen, G.J. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology, 2007, 148(2), 774-781.
[http://dx.doi.org/10.1210/en.2006-1168] [PMID: 17068132]
[http://dx.doi.org/10.1210/en.2006-1168] [PMID: 17068132]
[277]
Badman, M.K.; Pissios, P.; Kennedy, A.R.; Koukos, G.; Flier, J.S.; Maratos-Flier, E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab., 2007, 5(6), 426-437.
[http://dx.doi.org/10.1016/j.cmet.2007.05.002] [PMID: 17550778]
[http://dx.doi.org/10.1016/j.cmet.2007.05.002] [PMID: 17550778]
[278]
Laeger, T.; Baumeier, C.; Wilhelmi, I.; Würfel, J.; Kamitz, A.; Schürmann, A. FGF21 improves glucose homeostasis in an obese diabetes-prone mouse model independent of body fat changes. Diabetologia, 2017, 60(11), 2274-2284.
[http://dx.doi.org/10.1007/s00125-017-4389-x] [PMID: 28770320]
[http://dx.doi.org/10.1007/s00125-017-4389-x] [PMID: 28770320]
[279]
Lin, X.; Liu, Y.B.; Hu, H. Metabolic role of fibroblast growth factor 21 in liver, adipose and nervous system tissues. Biomed. Rep., 2017, 6(5), 495-502.
[http://dx.doi.org/10.3892/br.2017.890] [PMID: 28515909]
[http://dx.doi.org/10.3892/br.2017.890] [PMID: 28515909]
[280]
Davis, G.R.; Deville, T.; Guillory, J.; Bellar, D.; Nelson, A.G. Relationship between family history of type 2 diabetes and serum FGF21. Eur. J. Clin. Invest., 2017, 47(11), 853-859.
[http://dx.doi.org/10.1111/eci.12835] [PMID: 28881005]
[http://dx.doi.org/10.1111/eci.12835] [PMID: 28881005]
[281]
Gasser, E.; Moutos, C.P.; Downes, M.; Evans, R.M. FGF1 - a new weapon to control type 2 diabetes mellitus. Nat. Rev. Endocrinol., 2017, 13(10), 599-609.
[http://dx.doi.org/10.1038/nrendo.2017.78] [PMID: 28664920]
[http://dx.doi.org/10.1038/nrendo.2017.78] [PMID: 28664920]
[282]
Izaguirre, M.; Gil, M.J.; Monreal, I.; Montecucco, F.; Frühbeck, G.; Catalán, V. The Role and Potential Therapeutic Implications of the Fibroblast Growth Factors in Energy Balance and Type 2 Diabetes. Curr. Diab. Rep., 2017, 17(6), 43.
[http://dx.doi.org/10.1007/s11892-017-0866-3] [PMID: 28451950]
[http://dx.doi.org/10.1007/s11892-017-0866-3] [PMID: 28451950]
[283]
Nagata, K.; Kohda, D.; Hatanaka, H.; Ichikawa, S.; Matsuda, S.; Yamamoto, T.; Suzuki, A.; Inagaki, F. Solution structure of the epidermal growth factor-like domain of heregulin-alpha, a ligand for p180erbB-4. EMBO J., 1994, 13(15), 3517-3523.
[http://dx.doi.org/10.1002/j.1460-2075.1994.tb06658.x] [PMID: 8062828]
[http://dx.doi.org/10.1002/j.1460-2075.1994.tb06658.x] [PMID: 8062828]
[284]
Kralisch, S.; Hoffmann, A.; Klöting, N.; Bachmann, A.; Kratzsch, J.; Blüher, M.; Zhang, M.Z.; Harris, R.C.; Stumvoll, M.; Fasshauer, M.; Ebert, T. The novel adipokine/hepatokine fetuin B in severe human and murine diabetic kidney disease. Diabetes Metab., 2017, 43(5), 465-468.
[http://dx.doi.org/10.1016/j.diabet.2017.01.005] [PMID: 28214129]
[http://dx.doi.org/10.1016/j.diabet.2017.01.005] [PMID: 28214129]
[285]
Harari, D.; Tzahar, E.; Romano, J.; Shelly, M.; Pierce, J.H.; Andrews, G.C.; Yarden, Y. Neuregulin-4: a novel growth factor that acts through the ErbB-4 receptor tyrosine kinase. Oncogene, 1999, 18(17), 2681-2689.
[http://dx.doi.org/10.1038/sj.onc.1202631] [PMID: 10348342]
[http://dx.doi.org/10.1038/sj.onc.1202631] [PMID: 10348342]
[286]
Weitkunat, K.; Stuhlmann, C.; Postel, A.; Rumberger, S.; Fankhänel, M.; Woting, A.; Petzke, K.J.; Gohlke, S.; Schulz, T.J.; Blaut, M.; Klaus, S.; Schumann, S. Short-chain fatty acids and inulin, but not guar gum, prevent diet-induced obesity and insulin resistance through differential mechanisms in mice. Sci. Rep., 2017, 7(1), 6109.
[http://dx.doi.org/10.1038/s41598-017-06447-x] [PMID: 28733671]
[http://dx.doi.org/10.1038/s41598-017-06447-x] [PMID: 28733671]
[287]
Rosell, M.; Kaforou, M.; Frontini, A.; Okolo, A.; Chan, Y.W.; Nikolopoulou, E.; Millership, S.; Fenech, M.E.; MacIntyre, D.; Turner, J.O.; Moore, J.D.; Blackburn, E.; Gullick, W.J.; Cinti, S.; Montana, G.; Parker, M.G.; Christian, M. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. Am. J. Physiol. Endocrinol. Metab., 2014, 306(8), E945-E964.
[http://dx.doi.org/10.1152/ajpendo.00473.2013] [PMID: 24549398]
[http://dx.doi.org/10.1152/ajpendo.00473.2013] [PMID: 24549398]
[288]
Ma, Y.; Gao, M.; Liu, D. Preventing High Fat Diet-induced Obesity and Improving Insulin Sensitivity through Neuregulin 4 Gene Transfer. Sci. Rep., 2016, 6, 26242.
[http://dx.doi.org/10.1038/srep26242] [PMID: 27184920]
[http://dx.doi.org/10.1038/srep26242] [PMID: 27184920]
[289]
Christian, M. Transcriptional fingerprinting of “browning” white fat identifies NRG4 as a novel adipokine. Adipocyte, 2014, 4(1), 50-54.
[http://dx.doi.org/10.4161/adip.29853] [PMID: 26167402]
[http://dx.doi.org/10.4161/adip.29853] [PMID: 26167402]
[290]
Zhang, L.; Fu, Y.; Zhou, N.; Cheng, X.; Chen, C. Circulating neuregulin 4 concentrations in patients with newly diagnosed type 2 diabetes: a cross-sectional study. Endocrine, 2017, 57(3), 535-538.
[http://dx.doi.org/10.1007/s12020-017-1324-3] [PMID: 28523627]
[http://dx.doi.org/10.1007/s12020-017-1324-3] [PMID: 28523627]
[291]
Dai, Y.N.; Zhu, J.Z.; Fang, Z.Y.; Zhao, D.J.; Wan, X.Y.; Zhu, H.T.; Yu, C.H.; Li, Y.M. A case-control study: Association between serum neuregulin 4 level and non-alcoholic fatty liver disease. Metabolism, 2015, 64(12), 1667-1673.
[http://dx.doi.org/10.1016/j.metabol.2015.08.013] [PMID: 26476959]
[http://dx.doi.org/10.1016/j.metabol.2015.08.013] [PMID: 26476959]
[292]
Cai, C.; Lin, M.; Xu, Y.; Li, X.; Yang, S.; Zhang, H. Association of circulating neuregulin 4 with metabolic syndrome in obese adults: a cross-sectional study. BMC Med., 2016, 14(1), 165.
[http://dx.doi.org/10.1186/s12916-016-0703-6] [PMID: 27772531]
[http://dx.doi.org/10.1186/s12916-016-0703-6] [PMID: 27772531]
[293]
Jiang, J.; Lin, M.; Xu, Y.; Shao, J.; Li, X.; Zhang, H.; Yang, S. Circulating neuregulin 4 levels are inversely associated with subclinical cardiovascular disease in obese adults. Sci. Rep., 2016, 6, 36710.
[http://dx.doi.org/10.1038/srep36710] [PMID: 27819316]
[http://dx.doi.org/10.1038/srep36710] [PMID: 27819316]
[294]
Kang, Y.E.; Kim, J.M.; Choung, S.; Joung, K.H.; Lee, J.H.; Kim, H.J.; Ku, B.J. Comparison of serum Neuregulin 4 (Nrg4) levels in adults with newly diagnosed type 2 diabetes mellitus and controls without diabetes. Diabetes Res. Clin. Pract., 2016, 117, 1-3.
[http://dx.doi.org/10.1016/j.diabres.2016.04.007] [PMID: 27329015]
[http://dx.doi.org/10.1016/j.diabres.2016.04.007] [PMID: 27329015]
[295]
Yan, P.J.; Xu, Y.; Wan, Q.; Feng, J.; Li, H.; Gao, C.L.; Yang, J.; Zhong, H.H.; Zhang, Z.H. Decreased plasma neuregulin 4 concentration is associated with increased high-sensitivity C-reactive protein in newly diagnosed type 2 diabetes mellitus patients: a cross-sectional study. Acta Diabetol., 2017, 54(12), 1091-1099.
[http://dx.doi.org/10.1007/s00592-017-1044-4] [PMID: 28918492]
[http://dx.doi.org/10.1007/s00592-017-1044-4] [PMID: 28918492]
[296]
Moyers, J.S.; Shiyanova, T.L.; Mehrbod, F.; Dunbar, J.D.; Noblitt, T.W.; Otto, K.A.; Reifel-Miller, A.; Kharitonenkov, A. Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARgamma signaling. J. Cell. Physiol., 2007, 210(1), 1-6.
[http://dx.doi.org/10.1002/jcp.20847] [PMID: 17063460]
[http://dx.doi.org/10.1002/jcp.20847] [PMID: 17063460]
[297]
Nies, V.J.; Sancar, G.; Liu, W.; van Zutphen, T.; Struik, D.; Yu, R.T.; Atkins, A.R.; Evans, R.M.; Jonker, J.W.; Downes, M.R. Fibroblast Growth Factor Signaling in Metabolic Regulation. Front. Endocrinol. (Lausanne), 2016, 6, 193.
[http://dx.doi.org/10.3389/fendo.2015.00193] [PMID: 26834701]
[http://dx.doi.org/10.3389/fendo.2015.00193] [PMID: 26834701]