[1]
Keeney, D. In: What goes around comes around - The nitrogen
issues cycle, Proceeding, of 3rd International Dahlia Greidinger
Symposium on Fertilization and The Environment, Haifa,. 1997.
[2]
Jaggard, K.W.; Qi, A.; Ober, E.S. Possible changes to arable crop yields by 2050. Phil. Trans. R. Soc.B., 2010, 365, 2835-2851.
[3]
Mansoori, G.A. In: Molecular based study of condensed matter in
small systems,, Principles of nanotechnology; World Scientific Pub.
Co.: New York,. 2005.
[4]
Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171.
[5]
Nikoobakht, B.; El-Sayed, M.A. Preparation and growth mechanism of gold Nanorods (NRs) using seed-mediated growth method. Chem. Mater., 2003, 15, 1957-1962.
[6]
Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L.M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coordinat. Chem. Rev., 2015, 249(17-18), 1870-1901.
[7]
Prajapati, V.; Sharma, P.K.; Banik, A. Carbon nanotubes and its applications. Intl. J. Pharmaceut. Sci. Res., 2011, 2(5), 1099-1107.
[8]
Hirlekar, R.; Yamagar, M.; Garse, H.; Vij, M.; Kadam, V. Carbon nanotubes and its applications: A review. Asian J. Pharmaceut. Clin. Res, 2009, 2(4), 17-27.
[9]
Zhuang, L.; Scott, T.; Kevin, W.; Hongjie, D. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res., 2009, 2(2), 85-120.
[10]
Seetharamappa, J.; Yellappa, S.; D’Souza, F. Carbon nanotubes: Next generation of electronic materials. Electrochem. Soc. Interface, 2006, 15, 23-25.
[11]
Dekker, C. Carbon nanotubes as molecular quantum wires. Phys. Today, 1999, 52(5), 22-28.
[12]
Martel, R.; Derycke, V.; Lavoie, C.; Appenzeller, J.; Chan, K.K.; Tersoff, J.; Avouris, P. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett., 2001, 87(25), 256805.
[13]
Sarangdevot, K.; Sonigara, B.S. The wondrous world of carbon nanotubes: Structure, synthesis, properties and applications. J. Chem. Pharmaceut. Res., 2015, 7(6), 916-933.
[14]
Miller, W.W.; Joung, H.M.; Mahannah, C.N.; Garrett, J.R. Identification of water quality differences in nevada through index application. J. Environ. Quality., 1986, 15, 265-272.
[15]
Cheng, Y.X.; Liu, Y.Y.; Huang, J.J.; Man, Y.Z.; Zhang, W.; Zhang, Z.H.; Jin, L.T. Rapid amperometric detection of coliforms based on MWNTs/Nafion composite film modified glass carbon electrode. Talanta, 2008, 75(1), 167-171.
[16]
Brown, R.M.; McClelland, N.I.; Deininger, R.A.; Tozer, R.G. A water quality index- do we dare? Water and Sewage. Works, 1970, 117, 339-343.
[17]
Tsung-Hsuan, T.; Cheng-Yu, Y. Development of a dissolved oxygen sensor for commercial applications. Int. J. Electrochem. Sci., 2013, 8, 5250-5261.
[18]
Jingfang, H.; Jizhou, S.; Chao, B.; Jianhua, T.; Shanhong, Z. Three-dimensional nano- structured silver on gold interdigitatedmicroband array electrode for nitrate determination. Indian J. Chem. Technol., 2012, 19(6), 414-419.
[19]
Zhang, W.X.; Wang, C.B.; Lien, H.L. Treatment of Chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today, 1998, 40, 387-395.
[20]
Choi, W.B. Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett., 1999, 75, 3129-3131.
[21]
Shipley, H.J.; Engates, K.E.; Guttner, A.M. Study of iron oxide nanoparticles in soil for remediation of arsenic. J. Nanoparticle . Res., 2010, 13, 2387-2397.
[22]
Gan, S.; Lau, E.V.; Ng, H.K. Remediation of soils contaminated with Polycyclic Aromatic Hydrocarbons (PAHs). J. Hazard. Mater., 2009, 172(2-3), 532-549.
[23]
Sugunan, A.; Thanachayanont, C.; Dutta, J.; Hilborn, J.G. Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci. Technol. Adv. Mater., 2005, 6(3), 335-340.
[24]
Lin, C.C.; Yeh, Y.C.; Yang, C.Y.; Chen, C.L.; Chen, G.F.; Chen, C.C.; Wu, Y.C. Selective binding of mannose-encapsulated gold nanoparticles to type 1 Pili in Escherichia coli. J. Am. Chem. Soc., 2002, 124(14), 3508-3509.
[25]
Huang, Y.F.; Wang, Y.F.; Yan, X.P. Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens. Environ. Sci. Technol., 2010, 44(20), 7908-7913.
[26]
Zhang, D.; Anderson, M.J.; Huarng, M.C.; Alocilja, E.C. Nanoparticle-based biobarcoded DNA sensor for the rapid detection of pagA gene of Bacillus Anthracis. Nanotechnology, 2011, 23(21), 4756-4764.
[27]
Parkin, I.P.; Palgrave, R.G. Self-cleaning coatings. J. Mater. Chem., 2005, 15, 1689.
[28]
Salipira, K.; Mamda, B.B.; Krause, R.W.; Malefetse, T.J.; Durbach, S.H. Carbon nanotubes and cyclodextrin polymers for removing organic pollutants from water. Environ. Chem. Lett., 2007, 5, 13-17.
[29]
Cortalezzi, M.M. Ceramic membranes derived from ferroxanenanoparticles, a new route for the fabrication of iron oxide ultrafiltration membranes. J. Membr. Sci., 2003, 227, 207-217.
[30]
Tungittiplakorn, W.; Cohen, C.; Lion, L.W. Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Environ. Sci. Technol., 2005, 39, 1354-1358.
[33]
Arkas, M.; Allabashi, R.; Tsiourvas, D.; Mattausch, E.M.; Perfler, R. Organic/inorganic hybrid filters based on dendritic and cyclodextrin “Nanosponges” for the removal of organic pollutants from water. Environ. Sci. Technol., 2006, 40, 2771-2777.
[34]
Gemmimg, S.; Seifert, S. Catalysts on the Edge. Nature, 2007, 2, 21-22.
[35]
Chinnamuthu, C.R.; Boopathi, P.M. Nanotechnology and agroecosystem. Madras Agric. J., 2009, 96, 17-31.
[36]
Cui, H.X.; Sun, C.J.; Liu, Q.; Jiang, J.; Gu, W. In: Applications of
nanotechnology in agrochemical formulation, perspectives, challenges
and strategies., International Conference on Nanoagri, Sao
pedro, Brazil,. 2010, 20-25.
[37]
Rai, V.; Acharya, S.; Dey, N. Implications of nanobiosensors in agriculture. J. Biomater. Nanobiotechnol., 2012, 3, 315-324.
[38]
DeRosa, M.R.; Monreal, C.; Schnitzer, M.; Walsh, R.; Sultan, Y. Nanotechnology in fertilizers. Nat. Nanotechnol. J., 2010, 5, 91.
[39]
Leggo, P.J. An investigation of plant growth in an organo-zeolitic substrate and its ecological significance. Plant Soil, 2000, 219, 135-146.
[40]
Li, Z. Use of surfactant-modified zeolite as fertilizer carriers to control nitrate release. Micropor Mesopor Mater., 2003, 61, 181-188.
[41]
Liu, J.; Tian, S.; Meng, X.; Xu, Y. Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biol. Technol., 2007, 44, 300-306.
[42]
Al-Amin, S.M.D.; Jayasuriya, H.P. In: Nanotechnology prospects
in agricultural context: An overview., Proceedings of the International
Agricultural Engineering Conference, Bangkok, 3-6 December. 2007, pp. 548.
[43]
Sultan, Y.; Walsh, R.; Monreal, C.M.; DeRosa, M.C. Preparation of functional aptamer films using layer-by-layer self-assembly. Biomacromol. J., 2009, 10, 1149-1154.
[44]
Savary, S.; Teng, P.S.; Willocquet, L.; Nutter, F.W. Quantification and modeling of crop losses: A review of purposes. Ann. Rev. Phytopathol., 2006, 44, 89-12.
[45]
Gao, Y.; Lei, Z.; Reitz, S.R. Western flower thrips resistance to insecticides: Detection mechanisms and management strategies. Pest Manag. Sci., 2012, 68, 1111-1121.
[46]
Sparks, T.C.; Dripps, J.E.; Watson, G.B.; Paroonagian, D. Resistance and cross-resistance to the spinosyns: A review and analysis. Pest. Biochem. Physiol., 2012, 102, 1-10.
[47]
Anders, G.V.; Glotzer, S.C. DNA nanotechnology: The world’s smallest assembly line. Nat. Chem., 2012, 4, 79-80.
[48]
Karunaratne, V.; Kottegoda, N.; Alwis, A. nanotechnology in a world out of balance. J. Nat. Sci. Found. Sri Lanka, 2012, 40, 3-8.
[49]
Khot, L.R. Sankaran, Maja, S.J.M.; Ehsani, R.; Schuster, E.W. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protect., 2012, 35, 64-70.
[50]
Barik, T.K.; Sahu, B.; Swain, V. Nanosilica-from medicine to pest control. Parasitol. Res., 2008, 103, 253-258.
[51]
Goswami, A.; Roy, I.; Sengupta, S.; Debnath, N. Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films, 2010, 519, 1252-1257.
[52]
Gopal, M.; Kumar, R.; Goswami, A. Nano-pesticides-A recent approach for pest control. J. Plant Protect. Sci., 2012, 4(2), 1-7.
[53]
Gogoi, R.; Dureja, P.; Singh, P.K. Nanoformulations- a safer and effective option for agrochemicals. Indian Farm., 2009, 59(8), 7-12.
[54]
Sharon, M.; Choudhary, A.K.; Kumar, R. Nanotechnology in agricultural diseases and food safety. J. Phytol., 2010, 2(4), 83-92.
[55]
Rajan, M.S. Nano: The next revolution. National Book Trust, India.
[56]
Sharon, M.; Choudhary, A.K.; Kumar, R. Nanotechnology in agricultural diseases and food safety. J. Phytol., 2010, 2(4), 83-92.
[57]
Yao, K.S.; Li, S.J.; Tzeng, K.C.; Cheng, T.C.; Chang, C.Y.; Chiu, C.Y.; Liao, C.Y.; Hsu, J.J.; Lin, Z.P. Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv. Mater. Res., 2009, 79-82, 513-516.
[58]
Nugaeva, N.; Gfeller, K.Y.; Backmann, N.; Lang, H.P.; Duggelin, M.; Hegner, M. Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens. Bioelectron., 2005, 21(6), 849-856.
[59]
Yu, Y.; Zhang, S.; Ren, Y.; Li, H.; Zhang, X.; Di, J. Jujube preservation using chitosan film with nano-silicon dioxide. J. Food Eng., 2012, 113, 408-414.
[60]
Shi, S.; Wang, W.; Liu, L.; Wu, S.; Wei, Y.; Li, W. Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. J. Food Eng., 2013, 118, 125-131.
[61]
Kanto, T.; Miyoshi, A.; Ogawa, T.; Maekawa, K.; Aino, M. Suppressive effect of potassium silicate on powdery mildew of strawberry in hydroponics. J. Gen. Plant Pathol., 2004, 70, 207-211.
[62]
Jo, Y.K.; Kim, B.H.; Jung, G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis., 2009, 93(10), 1037-1043.
[63]
Gan, L.; Xu, W.Y.; Jiang, M.S.; He, B.H.; Su, M.J. A Study on the
inhibitory activities of nano-silver to Xanthomonas campestris pv.
campestris. Acta Agric. Univ. Jiangxi., 2010, 3, 016.
[64]
Sharon, M.; Choudhary, A.K.; Kumar, R. Nanotechnology in agricultural diseases and food safety. J. Phytol., 2010, 2(4), 83-92.
[65]
Lamsal, K.; Kim, S.W.; Jung, J.H.; Kim, Y.S.; Kim, K.S.; Lee, Y.S. Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology, 2011, 39, 194-199. a
[66]
Seo, Y.; Cho, J.; Jeong, H.; Yim, T.; Cho, K.; Lee, T. Enhancement of antifungal activity of anthracnose in pepper by nanopaticles of thiamine di-lauryl sulfate. Korean J. Med. Crop Sci., 2011, 19(3), 198-204.
[67]
Chookhongkha, N.; Sopondilok, T.; Photchanachai, S. In: Effect of
chitosan and chitosan nanoparticles on fungal growth and chilli
seed quality., International Conference on Postharvest Pest and Disease
Management in Exporting Horticultural Crops-PPDM,. 2012, 973, 231-237.
[68]
Mondal, K.; Mani, C. Investigation of the antibacterial properties of nanocopper against Xanthomon Asaxonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann. Microbiol., 2012, 62, 889-893.
[69]
Paret, M.L.; Vallad, G.E.; Averett, D.R.; Jones, J.B.; Olson, S.M. Photocatalysis: Effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology, 2012, 103, 228-236.
[70]
Giannousi, K.; Avramidis, I.; Dendrinou Samara, C. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv., 2013, 3, 21743-21752.
[71]
Gerion, D.; Chen, F.; Kannan, B.; Fu, A.; Parak, W.J.; Chen, D.J.; Majurndar, A.; Alivisatos, A.P. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. Anal. Chem., 2003, 75, 4766-4772.
[72]
Fritzsche, W.; Taton, T.A. Metal nanoparticles as labels for heterogeneous, chip-based DNA detection. Nanotechnology, 2003, 14, R63-R73.
[73]
Schotter, J.; Kamp, P.B.; Beckere, A.; Puhler, A.; Reiss, G.; Bruckl, H. Comparison of a prototype magnetoresistive biosensor to standard fluorescent DNA detection. Biosens. Bioelectron., 2004, 19, 1149-1156.
[74]
Gasparac, R. Ultrasensitive electrocatalytic DNA detection at 2D and 3D nanoelectrodes. J. Am. Chem. Soc., 2004, 126, 12750-12751.
[75]
Bailey, R.C. Real-time multicolor DNA detection with chemoresponsive diffraction gratings and nanoparticle probes. J. Am. Chem. Soc., 2003, 125(44), 13541-13547.
[76]
Singh, R.; Pantarotto, D.; McCarthy, D.; Chaloin, O.; Hoebeke, J.; Partidos, C.D.; Briand, J.P.; Prato, M.; Bianco, A.; Kostarelos, K. Binding and condensation of plasmid dna onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc., 2005, 127(12), 4388-4396.
[77]
Nunes, A.; Amsharov, N.; Guo, C.; Bossche, J.V.; Santhosh, P.; Karachalios, T.K.; Nitodas, S.F.; Burghard, M. Kostarelos. K.; Al-Jamal, K.T. Hybrid Polymer-grafted multiwalled carbon nanotubes for in vitro gene delivery. Small, 2010, 6(20), 2281-2291.
[78]
Rahman, F.; Chowdhury, S.; Rahman, M.M.; Ahmed, D.; Hossain, A. Antimicrobial resistance pattern of gramnegative bacteria causing urinary tract infection. S. J. Pharm. Sci, 2009, 2(1), 44-50.
[79]
Govindaraju, K.; Tamilselvan, S.; Kiruthiga, V.; Singaravelu, G. Silvernanotheraphy on the viral borne disease of silkworm Bombyxmori L. J. Nanoparticles Res, 2011, 13, 6377-6388.
[80]
Tamilselvan, S.; Ashokkumar, T.; Geetha, R.K. Govindaraju,
Singaravelu, G. Biogenic silver nanoparticles’ Bombyxmori
nuclearpolyhedrosis virus., (BmNPV) inhibitory mechanism. In:
Nanobiomaterials; Geckeler, K.E.; Rajendran, V., Ed.; Bloomsbury
Publishers: London, 2012, pp. 203-208, ISBN: 978-93-82563-37-2.
[81]
Wenchu, L.; Kapalunenko, V.; Yeyuan, W.; Dimchev, V. The bactericidal spectrum and virucidal effects of silver nanoparticles against the pathogens in sericulture. J. Animal . Sci., 2013, 3(3), 169-173.
[82]
Ulrichs, C; Mewis, I.; Goswami, A. Crop diversification aiming
nutritional security in West Bengal: Biotechnology of stinging capsules
in nature’s water-blooms. Ann. Tech. Issue State Agric. Technol.
Serv. Assoc.,, 2005, 1-18.
[83]
Cioffi, N.; Torsi, L.; Ditaranto, N. Antifungal activity of polymer-based copper nanocomposite coatings. Appl. Phys. Lett., 2004, 85(12), 2417-2419.
[84]
Weisman, R.; Cherukuri, P.; Bachilo, S.; Litovsky, S. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc., 2004, 126(48), 15638-15639.
[85]
De La Zerda, A.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z.; Levi, J.; Smith, B.R.; Ma, T.J.; Oralkan, O.; Cheng, Z.; Chen, X.; Dai, H.; Khuri-Yakub, B.T.; Gambhir, S.S. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol., 2008, 3(9), 557.
[86]
Flacke, S.; Fischer, S.; Scott, M.J.; Fuhrhop, R.J.; Allen, J.S.; McLean, M.; Winter, P.; Sicard, G.A.; Ganffney, P.J.; Wickline, S.A.; Lanza, G.M. Novel MRI contrast agent for molecular imagaing of fibrin implications for detecting vulnerable plaques. Circulation, 2001, 104, 1282-1285.
[87]
Barroug, A.; Glimcher, M. Hydroxyapatite crystals as a local delivery system for cisplatin: adsorption and release of cisplatin in vitro. J. Ortho. Res., 2002, 20, 274-280.
[88]
Wu, W.; Wieckowski, S.; Klumpp, C.; Pastorin, G.; Benincasa, M.; Briand, J.P.; Gennaro, R.; Prato, M.; Bianco, A. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed., 2005, 44(39), 6358-6362.
[89]
Cristina, R.; Gianni, C.; Vittoria, R.; Alfred, C.; Silvestro, M. Solvothermal synthesis, growth mechanism, and photoluminescence property of sub-micrometer PbS anisotropic structures. Nanoscale Res. Lett., 2009, 4(7), 668-673.
[90]
Yinghuai, Z.; Peng, A.; Carpenter, K.; Maguire, J.; Hosmane, A.; Takagaki, M. Ruthenium-catalyzed hydrative cyclization of 1,5-enynes. J. Am. Chem. Soc., 2005, 125, 9875-9880.
[91]
Zhuang, L.; Cai, W.; He, L.; Nakayama, N.; Chen, K.; Sun, X.; Chen, X.; Dai, H. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol., 2007, 2(1), 47-52.
[92]
Panchapakesan, B.; Wickstrom, E. Nanotechnology for sensing, imaging, and treating cancer. Surg. Oncol. Clin. North . Am., 2007, 16(2), 293-305.
[93]
Dhar, S.; Liu, Z.; Thomale, J.; Dai, H.; Lippard, S.J. Targeted single wall carbon nanotube mediated Pt(IV) prodrug delivery using folate as a homing device. J. Am. Chem. Soc., 2008, 130(34), 11467-11476.
[94]
Salata, O.V. Review: Applications of nanoparticles in biology and medicine. J. Nanobiotechnol., 2004, 2(1), 1-6.
[95]
Mah, C.; Zolotukhin, I.; Fraites, T.J.; Dobson, J.; Batich, C.; Byrne, B.J. Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo. Mol. Ther., 2000, 1, S239.
[96]
Panatarotto, D.; Prtidos, C.D.; Hoebeke, J.; Brown, F.; Kramer, E.; Briand, J.P.; Muller, S.; Prato, M.; Bianco, A. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem. Biol., 2003, 10, 961-966.
[97]
Edelstein, R.L.; Tamanaha, C.R.; Sheehan, P.E.; Miller, M.M.; Baselt, D.R.; Whitman, L.J.; Colton, R.J. The BARC biosensor applied to the detection of biological warfare agents. Biosens. Bioelectron., 2000, 14, 805-813.
[98]
Nam, J.M.; Thaxton, C.C.; Mirkin, C.A. Nanoparticles-based bio-bar codes for the ultrasensitive detection of proteins. Science, 2003, 301, 1884-1886.
[99]
Ma, J.; Wong, H.; Kong, L.B.; Peng, K.W. Biomimetic processing of nanocrystallite bioactive apatite coating on titanium. Nanotechnology, 2003, 14, 619-623.
[100]
De la Isla, A.; Brostow, W.; Bujard, B.; Estevez, M.; Rodriguez, J.R.; Vargas, S.; Castano, V.M. Nanohybrid scratch resistant coating for teeth and bone viscoelasticity manifested in tribology. Mat. Res. Innovat., 2003, 7, 110-114.
[101]
Yoshida, J.; Kobayashi, T. Intracellular hyperthermia for cancer using magnetite cationic liposomes. J. Magn. Magn. Mater., 1999, 194, 176-184.
[102]
Molday, R.S.; MacKenzie, D. Immunospecific ferromagnetic iron dextran reagents for the labeling and magnetic separation of cells. J. Immunol. Methods, 1982, 52, 353-367.