Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

A Review Paper on Recent Trends in Bio-nanotechnology: Implications and Potentials

Author(s): Gulab K. Rohela*, Yelugu Srinivasulu and Mahender S. Rathore

Volume 9, Issue 1, 2019

Page: [12 - 20] Pages: 9

DOI: 10.2174/2210681208666171204163015

Price: $65

Abstract

Introduction: Nanotechnology, an advanced science discipline has proved to be vital in solving the major issues or problems, the present world is facing. Nanotechnology has already proved to be the science of revolutionizing agriculture, energy conversions, applied & medical science and other domains.

Conclusion: In this paper, we present the recent developments taken place in bio-nanotechnology related to different forms of nanomaterial’s developed along with their application; overcoming hazardous effects of chemical pesticides, fertilizers and herbicides by promoting green and sustainable agriculture through the use of nanofertilizers, nano pesticides and detection & control of plant diseases by using nanoparticles; development of diagnostic tools for detection and control of human diseases; targeted delivery of drugs by using nanomaterial’s, protection of the environment through nanoparticles based pollution checking, bioremediation, renewable energy production and role of nanotechnology in applied sciences.

Keywords: Bio-nanotechnology, nanofertilizers, nanopesticides, bioremediation, renewable energy, sustainable agriculture.

Graphical Abstract

[1]
Keeney, D. In: What goes around comes around - The nitrogen issues cycle, Proceeding, of 3rd International Dahlia Greidinger Symposium on Fertilization and The Environment, Haifa,. 1997.
[2]
Jaggard, K.W.; Qi, A.; Ober, E.S. Possible changes to arable crop yields by 2050. Phil. Trans. R. Soc.B., 2010, 365, 2835-2851.
[3]
Mansoori, G.A. In: Molecular based study of condensed matter in small systems,, Principles of nanotechnology; World Scientific Pub. Co.: New York,. 2005.
[4]
Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171.
[5]
Nikoobakht, B.; El-Sayed, M.A. Preparation and growth mechanism of gold Nanorods (NRs) using seed-mediated growth method. Chem. Mater., 2003, 15, 1957-1962.
[6]
Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L.M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coordinat. Chem. Rev., 2015, 249(17-18), 1870-1901.
[7]
Prajapati, V.; Sharma, P.K.; Banik, A. Carbon nanotubes and its applications. Intl. J. Pharmaceut. Sci. Res., 2011, 2(5), 1099-1107.
[8]
Hirlekar, R.; Yamagar, M.; Garse, H.; Vij, M.; Kadam, V. Carbon nanotubes and its applications: A review. Asian J. Pharmaceut. Clin. Res, 2009, 2(4), 17-27.
[9]
Zhuang, L.; Scott, T.; Kevin, W.; Hongjie, D. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res., 2009, 2(2), 85-120.
[10]
Seetharamappa, J.; Yellappa, S.; D’Souza, F. Carbon nanotubes: Next generation of electronic materials. Electrochem. Soc. Interface, 2006, 15, 23-25.
[11]
Dekker, C. Carbon nanotubes as molecular quantum wires. Phys. Today, 1999, 52(5), 22-28.
[12]
Martel, R.; Derycke, V.; Lavoie, C.; Appenzeller, J.; Chan, K.K.; Tersoff, J.; Avouris, P. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett., 2001, 87(25), 256805.
[13]
Sarangdevot, K.; Sonigara, B.S. The wondrous world of carbon nanotubes: Structure, synthesis, properties and applications. J. Chem. Pharmaceut. Res., 2015, 7(6), 916-933.
[14]
Miller, W.W.; Joung, H.M.; Mahannah, C.N.; Garrett, J.R. Identification of water quality differences in nevada through index application. J. Environ. Quality., 1986, 15, 265-272.
[15]
Cheng, Y.X.; Liu, Y.Y.; Huang, J.J.; Man, Y.Z.; Zhang, W.; Zhang, Z.H.; Jin, L.T. Rapid amperometric detection of coliforms based on MWNTs/Nafion composite film modified glass carbon electrode. Talanta, 2008, 75(1), 167-171.
[16]
Brown, R.M.; McClelland, N.I.; Deininger, R.A.; Tozer, R.G. A water quality index- do we dare? Water and Sewage. Works, 1970, 117, 339-343.
[17]
Tsung-Hsuan, T.; Cheng-Yu, Y. Development of a dissolved oxygen sensor for commercial applications. Int. J. Electrochem. Sci., 2013, 8, 5250-5261.
[18]
Jingfang, H.; Jizhou, S.; Chao, B.; Jianhua, T.; Shanhong, Z. Three-dimensional nano- structured silver on gold interdigitatedmicroband array electrode for nitrate determination. Indian J. Chem. Technol., 2012, 19(6), 414-419.
[19]
Zhang, W.X.; Wang, C.B.; Lien, H.L. Treatment of Chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today, 1998, 40, 387-395.
[20]
Choi, W.B. Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett., 1999, 75, 3129-3131.
[21]
Shipley, H.J.; Engates, K.E.; Guttner, A.M. Study of iron oxide nanoparticles in soil for remediation of arsenic. J. Nanoparticle . Res., 2010, 13, 2387-2397.
[22]
Gan, S.; Lau, E.V.; Ng, H.K. Remediation of soils contaminated with Polycyclic Aromatic Hydrocarbons (PAHs). J. Hazard. Mater., 2009, 172(2-3), 532-549.
[23]
Sugunan, A.; Thanachayanont, C.; Dutta, J.; Hilborn, J.G. Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci. Technol. Adv. Mater., 2005, 6(3), 335-340.
[24]
Lin, C.C.; Yeh, Y.C.; Yang, C.Y.; Chen, C.L.; Chen, G.F.; Chen, C.C.; Wu, Y.C. Selective binding of mannose-encapsulated gold nanoparticles to type 1 Pili in Escherichia coli. J. Am. Chem. Soc., 2002, 124(14), 3508-3509.
[25]
Huang, Y.F.; Wang, Y.F.; Yan, X.P. Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens. Environ. Sci. Technol., 2010, 44(20), 7908-7913.
[26]
Zhang, D.; Anderson, M.J.; Huarng, M.C.; Alocilja, E.C. Nanoparticle-based biobarcoded DNA sensor for the rapid detection of pagA gene of Bacillus Anthracis. Nanotechnology, 2011, 23(21), 4756-4764.
[27]
Parkin, I.P.; Palgrave, R.G. Self-cleaning coatings. J. Mater. Chem., 2005, 15, 1689.
[28]
Salipira, K.; Mamda, B.B.; Krause, R.W.; Malefetse, T.J.; Durbach, S.H. Carbon nanotubes and cyclodextrin polymers for removing organic pollutants from water. Environ. Chem. Lett., 2007, 5, 13-17.
[29]
Cortalezzi, M.M. Ceramic membranes derived from ferroxanenanoparticles, a new route for the fabrication of iron oxide ultrafiltration membranes. J. Membr. Sci., 2003, 227, 207-217.
[30]
Tungittiplakorn, W.; Cohen, C.; Lion, L.W. Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Environ. Sci. Technol., 2005, 39, 1354-1358.
[31]
Watlington, K.U.S. Environmental Protection Agency August, 2005.www.epa.govwww.clu-in.org
[33]
Arkas, M.; Allabashi, R.; Tsiourvas, D.; Mattausch, E.M.; Perfler, R. Organic/inorganic hybrid filters based on dendritic and cyclodextrin “Nanosponges” for the removal of organic pollutants from water. Environ. Sci. Technol., 2006, 40, 2771-2777.
[34]
Gemmimg, S.; Seifert, S. Catalysts on the Edge. Nature, 2007, 2, 21-22.
[35]
Chinnamuthu, C.R.; Boopathi, P.M. Nanotechnology and agroecosystem. Madras Agric. J., 2009, 96, 17-31.
[36]
Cui, H.X.; Sun, C.J.; Liu, Q.; Jiang, J.; Gu, W. In: Applications of nanotechnology in agrochemical formulation, perspectives, challenges and strategies., International Conference on Nanoagri, Sao pedro, Brazil,. 2010, 20-25.
[37]
Rai, V.; Acharya, S.; Dey, N. Implications of nanobiosensors in agriculture. J. Biomater. Nanobiotechnol., 2012, 3, 315-324.
[38]
DeRosa, M.R.; Monreal, C.; Schnitzer, M.; Walsh, R.; Sultan, Y. Nanotechnology in fertilizers. Nat. Nanotechnol. J., 2010, 5, 91.
[39]
Leggo, P.J. An investigation of plant growth in an organo-zeolitic substrate and its ecological significance. Plant Soil, 2000, 219, 135-146.
[40]
Li, Z. Use of surfactant-modified zeolite as fertilizer carriers to control nitrate release. Micropor Mesopor Mater., 2003, 61, 181-188.
[41]
Liu, J.; Tian, S.; Meng, X.; Xu, Y. Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biol. Technol., 2007, 44, 300-306.
[42]
Al-Amin, S.M.D.; Jayasuriya, H.P. In: Nanotechnology prospects in agricultural context: An overview., Proceedings of the International Agricultural Engineering Conference, Bangkok, 3-6 December. 2007, pp. 548.
[43]
Sultan, Y.; Walsh, R.; Monreal, C.M.; DeRosa, M.C. Preparation of functional aptamer films using layer-by-layer self-assembly. Biomacromol. J., 2009, 10, 1149-1154.
[44]
Savary, S.; Teng, P.S.; Willocquet, L.; Nutter, F.W. Quantification and modeling of crop losses: A review of purposes. Ann. Rev. Phytopathol., 2006, 44, 89-12.
[45]
Gao, Y.; Lei, Z.; Reitz, S.R. Western flower thrips resistance to insecticides: Detection mechanisms and management strategies. Pest Manag. Sci., 2012, 68, 1111-1121.
[46]
Sparks, T.C.; Dripps, J.E.; Watson, G.B.; Paroonagian, D. Resistance and cross-resistance to the spinosyns: A review and analysis. Pest. Biochem. Physiol., 2012, 102, 1-10.
[47]
Anders, G.V.; Glotzer, S.C. DNA nanotechnology: The world’s smallest assembly line. Nat. Chem., 2012, 4, 79-80.
[48]
Karunaratne, V.; Kottegoda, N.; Alwis, A. nanotechnology in a world out of balance. J. Nat. Sci. Found. Sri Lanka, 2012, 40, 3-8.
[49]
Khot, L.R. Sankaran, Maja, S.J.M.; Ehsani, R.; Schuster, E.W. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protect., 2012, 35, 64-70.
[50]
Barik, T.K.; Sahu, B.; Swain, V. Nanosilica-from medicine to pest control. Parasitol. Res., 2008, 103, 253-258.
[51]
Goswami, A.; Roy, I.; Sengupta, S.; Debnath, N. Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films, 2010, 519, 1252-1257.
[52]
Gopal, M.; Kumar, R.; Goswami, A. Nano-pesticides-A recent approach for pest control. J. Plant Protect. Sci., 2012, 4(2), 1-7.
[53]
Gogoi, R.; Dureja, P.; Singh, P.K. Nanoformulations- a safer and effective option for agrochemicals. Indian Farm., 2009, 59(8), 7-12.
[54]
Sharon, M.; Choudhary, A.K.; Kumar, R. Nanotechnology in agricultural diseases and food safety. J. Phytol., 2010, 2(4), 83-92.
[55]
Rajan, M.S. Nano: The next revolution. National Book Trust, India.
[56]
Sharon, M.; Choudhary, A.K.; Kumar, R. Nanotechnology in agricultural diseases and food safety. J. Phytol., 2010, 2(4), 83-92.
[57]
Yao, K.S.; Li, S.J.; Tzeng, K.C.; Cheng, T.C.; Chang, C.Y.; Chiu, C.Y.; Liao, C.Y.; Hsu, J.J.; Lin, Z.P. Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv. Mater. Res., 2009, 79-82, 513-516.
[58]
Nugaeva, N.; Gfeller, K.Y.; Backmann, N.; Lang, H.P.; Duggelin, M.; Hegner, M. Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens. Bioelectron., 2005, 21(6), 849-856.
[59]
Yu, Y.; Zhang, S.; Ren, Y.; Li, H.; Zhang, X.; Di, J. Jujube preservation using chitosan film with nano-silicon dioxide. J. Food Eng., 2012, 113, 408-414.
[60]
Shi, S.; Wang, W.; Liu, L.; Wu, S.; Wei, Y.; Li, W. Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. J. Food Eng., 2013, 118, 125-131.
[61]
Kanto, T.; Miyoshi, A.; Ogawa, T.; Maekawa, K.; Aino, M. Suppressive effect of potassium silicate on powdery mildew of strawberry in hydroponics. J. Gen. Plant Pathol., 2004, 70, 207-211.
[62]
Jo, Y.K.; Kim, B.H.; Jung, G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis., 2009, 93(10), 1037-1043.
[63]
Gan, L.; Xu, W.Y.; Jiang, M.S.; He, B.H.; Su, M.J. A Study on the inhibitory activities of nano-silver to Xanthomonas campestris pv. campestris. Acta Agric. Univ. Jiangxi., 2010, 3, 016.
[64]
Sharon, M.; Choudhary, A.K.; Kumar, R. Nanotechnology in agricultural diseases and food safety. J. Phytol., 2010, 2(4), 83-92.
[65]
Lamsal, K.; Kim, S.W.; Jung, J.H.; Kim, Y.S.; Kim, K.S.; Lee, Y.S. Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology, 2011, 39, 194-199. a
[66]
Seo, Y.; Cho, J.; Jeong, H.; Yim, T.; Cho, K.; Lee, T. Enhancement of antifungal activity of anthracnose in pepper by nanopaticles of thiamine di-lauryl sulfate. Korean J. Med. Crop Sci., 2011, 19(3), 198-204.
[67]
Chookhongkha, N.; Sopondilok, T.; Photchanachai, S. In: Effect of chitosan and chitosan nanoparticles on fungal growth and chilli seed quality., International Conference on Postharvest Pest and Disease Management in Exporting Horticultural Crops-PPDM,. 2012, 973, 231-237.
[68]
Mondal, K.; Mani, C. Investigation of the antibacterial properties of nanocopper against Xanthomon Asaxonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann. Microbiol., 2012, 62, 889-893.
[69]
Paret, M.L.; Vallad, G.E.; Averett, D.R.; Jones, J.B.; Olson, S.M. Photocatalysis: Effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology, 2012, 103, 228-236.
[70]
Giannousi, K.; Avramidis, I.; Dendrinou Samara, C. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv., 2013, 3, 21743-21752.
[71]
Gerion, D.; Chen, F.; Kannan, B.; Fu, A.; Parak, W.J.; Chen, D.J.; Majurndar, A.; Alivisatos, A.P. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. Anal. Chem., 2003, 75, 4766-4772.
[72]
Fritzsche, W.; Taton, T.A. Metal nanoparticles as labels for heterogeneous, chip-based DNA detection. Nanotechnology, 2003, 14, R63-R73.
[73]
Schotter, J.; Kamp, P.B.; Beckere, A.; Puhler, A.; Reiss, G.; Bruckl, H. Comparison of a prototype magnetoresistive biosensor to standard fluorescent DNA detection. Biosens. Bioelectron., 2004, 19, 1149-1156.
[74]
Gasparac, R. Ultrasensitive electrocatalytic DNA detection at 2D and 3D nanoelectrodes. J. Am. Chem. Soc., 2004, 126, 12750-12751.
[75]
Bailey, R.C. Real-time multicolor DNA detection with chemoresponsive diffraction gratings and nanoparticle probes. J. Am. Chem. Soc., 2003, 125(44), 13541-13547.
[76]
Singh, R.; Pantarotto, D.; McCarthy, D.; Chaloin, O.; Hoebeke, J.; Partidos, C.D.; Briand, J.P.; Prato, M.; Bianco, A.; Kostarelos, K. Binding and condensation of plasmid dna onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc., 2005, 127(12), 4388-4396.
[77]
Nunes, A.; Amsharov, N.; Guo, C.; Bossche, J.V.; Santhosh, P.; Karachalios, T.K.; Nitodas, S.F.; Burghard, M. Kostarelos. K.; Al-Jamal, K.T. Hybrid Polymer-grafted multiwalled carbon nanotubes for in vitro gene delivery. Small, 2010, 6(20), 2281-2291.
[78]
Rahman, F.; Chowdhury, S.; Rahman, M.M.; Ahmed, D.; Hossain, A. Antimicrobial resistance pattern of gramnegative bacteria causing urinary tract infection. S. J. Pharm. Sci, 2009, 2(1), 44-50.
[79]
Govindaraju, K.; Tamilselvan, S.; Kiruthiga, V.; Singaravelu, G. Silvernanotheraphy on the viral borne disease of silkworm Bombyxmori L. J. Nanoparticles Res, 2011, 13, 6377-6388.
[80]
Tamilselvan, S.; Ashokkumar, T.; Geetha, R.K. Govindaraju, Singaravelu, G. Biogenic silver nanoparticles’ Bombyxmori nuclearpolyhedrosis virus., (BmNPV) inhibitory mechanism. In: Nanobiomaterials; Geckeler, K.E.; Rajendran, V., Ed.; Bloomsbury Publishers: London, 2012, pp. 203-208, ISBN: 978-93-82563-37-2.
[81]
Wenchu, L.; Kapalunenko, V.; Yeyuan, W.; Dimchev, V. The bactericidal spectrum and virucidal effects of silver nanoparticles against the pathogens in sericulture. J. Animal . Sci., 2013, 3(3), 169-173.
[82]
Ulrichs, C; Mewis, I.; Goswami, A. Crop diversification aiming nutritional security in West Bengal: Biotechnology of stinging capsules in nature’s water-blooms. Ann. Tech. Issue State Agric. Technol. Serv. Assoc.,, 2005, 1-18.
[83]
Cioffi, N.; Torsi, L.; Ditaranto, N. Antifungal activity of polymer-based copper nanocomposite coatings. Appl. Phys. Lett., 2004, 85(12), 2417-2419.
[84]
Weisman, R.; Cherukuri, P.; Bachilo, S.; Litovsky, S. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc., 2004, 126(48), 15638-15639.
[85]
De La Zerda, A.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z.; Levi, J.; Smith, B.R.; Ma, T.J.; Oralkan, O.; Cheng, Z.; Chen, X.; Dai, H.; Khuri-Yakub, B.T.; Gambhir, S.S. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol., 2008, 3(9), 557.
[86]
Flacke, S.; Fischer, S.; Scott, M.J.; Fuhrhop, R.J.; Allen, J.S.; McLean, M.; Winter, P.; Sicard, G.A.; Ganffney, P.J.; Wickline, S.A.; Lanza, G.M. Novel MRI contrast agent for molecular imagaing of fibrin implications for detecting vulnerable plaques. Circulation, 2001, 104, 1282-1285.
[87]
Barroug, A.; Glimcher, M. Hydroxyapatite crystals as a local delivery system for cisplatin: adsorption and release of cisplatin in vitro. J. Ortho. Res., 2002, 20, 274-280.
[88]
Wu, W.; Wieckowski, S.; Klumpp, C.; Pastorin, G.; Benincasa, M.; Briand, J.P.; Gennaro, R.; Prato, M.; Bianco, A. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed., 2005, 44(39), 6358-6362.
[89]
Cristina, R.; Gianni, C.; Vittoria, R.; Alfred, C.; Silvestro, M. Solvothermal synthesis, growth mechanism, and photoluminescence property of sub-micrometer PbS anisotropic structures. Nanoscale Res. Lett., 2009, 4(7), 668-673.
[90]
Yinghuai, Z.; Peng, A.; Carpenter, K.; Maguire, J.; Hosmane, A.; Takagaki, M. Ruthenium-catalyzed hydrative cyclization of 1,5-enynes. J. Am. Chem. Soc., 2005, 125, 9875-9880.
[91]
Zhuang, L.; Cai, W.; He, L.; Nakayama, N.; Chen, K.; Sun, X.; Chen, X.; Dai, H. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol., 2007, 2(1), 47-52.
[92]
Panchapakesan, B.; Wickstrom, E. Nanotechnology for sensing, imaging, and treating cancer. Surg. Oncol. Clin. North . Am., 2007, 16(2), 293-305.
[93]
Dhar, S.; Liu, Z.; Thomale, J.; Dai, H.; Lippard, S.J. Targeted single wall carbon nanotube mediated Pt(IV) prodrug delivery using folate as a homing device. J. Am. Chem. Soc., 2008, 130(34), 11467-11476.
[94]
Salata, O.V. Review: Applications of nanoparticles in biology and medicine. J. Nanobiotechnol., 2004, 2(1), 1-6.
[95]
Mah, C.; Zolotukhin, I.; Fraites, T.J.; Dobson, J.; Batich, C.; Byrne, B.J. Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo. Mol. Ther., 2000, 1, S239.
[96]
Panatarotto, D.; Prtidos, C.D.; Hoebeke, J.; Brown, F.; Kramer, E.; Briand, J.P.; Muller, S.; Prato, M.; Bianco, A. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem. Biol., 2003, 10, 961-966.
[97]
Edelstein, R.L.; Tamanaha, C.R.; Sheehan, P.E.; Miller, M.M.; Baselt, D.R.; Whitman, L.J.; Colton, R.J. The BARC biosensor applied to the detection of biological warfare agents. Biosens. Bioelectron., 2000, 14, 805-813.
[98]
Nam, J.M.; Thaxton, C.C.; Mirkin, C.A. Nanoparticles-based bio-bar codes for the ultrasensitive detection of proteins. Science, 2003, 301, 1884-1886.
[99]
Ma, J.; Wong, H.; Kong, L.B.; Peng, K.W. Biomimetic processing of nanocrystallite bioactive apatite coating on titanium. Nanotechnology, 2003, 14, 619-623.
[100]
De la Isla, A.; Brostow, W.; Bujard, B.; Estevez, M.; Rodriguez, J.R.; Vargas, S.; Castano, V.M. Nanohybrid scratch resistant coating for teeth and bone viscoelasticity manifested in tribology. Mat. Res. Innovat., 2003, 7, 110-114.
[101]
Yoshida, J.; Kobayashi, T. Intracellular hyperthermia for cancer using magnetite cationic liposomes. J. Magn. Magn. Mater., 1999, 194, 176-184.
[102]
Molday, R.S.; MacKenzie, D. Immunospecific ferromagnetic iron dextran reagents for the labeling and magnetic separation of cells. J. Immunol. Methods, 1982, 52, 353-367.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy