[2]
Al-Amri SS, Kalyankar NV. Image segmentation by using
threshold techniques. J Comput 2010; 2(5): arXiv:1005.4020
[cs.CV].
[3]
Pal NR, Pal SK. A review on image segmentation techniques. Patt Recogn 1993; 26(9): 1277-94.
[4]
Haralick RM, Shapiro LG. Image segmentation techniques. Comp
Vis Graph Image Process 1985; 2 9(1): 100-32.
[5]
Varshney SS, Rajpal N, Purwar R. Comparative study of image
segmentation techniques and object matching using segmentation.
In: Proceeding of International Conference on Methods and Models
in Computer Science (ICM2CS) 2009. IEEE; Delhi, India; pp. 1-6.
[6]
Sharma N, Aggarwal LM. Automated medical image segmentation techniques. J Med Phys 2010; 35(1): 3.
[7]
Edelman RR, Warach S. Magnetic resonance imaging. N Engl J Med 1993; 328(10): 708-16.
[8]
Iglesias JE, Sabuncu MR. Multi-atlas segmentation of biomedical images: A survey. Med Image Anal 2015; 24(1): 205-19.
[9]
Hossam MM, Hassanien AE, Shoman M. 3D brain tumor
segmentation scheme using K-mean clustering and connected
component labeling algorithms. 10th international conference on
intelligent systems design and applications 2010: IEEE; pp. 320-4.
[10]
El-Melegy MT, Mokhtar HM. Tumor segmentation in brain MRI using a fuzzy approach with class center priors. EURASIP J Image Video Process 2014; 2014(1): 1-14.
[11]
Li C, Huang R, Ding Z, Gatenby JC, Metaxas DN, Gore JC. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 2011; 20(7): 2007-16.
[12]
Suzuki H, Toriwaki J-i. Automatic segmentation of head MRI images by knowledge guided thresholding. Comput Med Imaging Graph 1991; 15(4): 233-40.
[13]
Banerjee S, Mukherjee DP, Majumdar DD. Fuzzy c-means approach to tissue classification in multimodal medical imaging. Inf Sci 1999; 115(1): 261-79.
[14]
Michopoulou SK, Costaridou L, Panagiotopoulos E, Speller R, Panayiotakis G, Todd-Pokropek A. Atlas-based segmentation of degenerated lumbar intervertebral discs from MR images of the spine. Biomed Eng IEEE Trans 2009; 56(9): 2225-31.
[15]
Zhang D-Q, Chen S-C. A novel kernelized fuzzy c-means algorithm with application in medical image segmentation. Artif Intell Med 2004; 32(1): 37-50.
[16]
Hsiao Y-T, Chuang C-L, Jiang J-A, Chien C-C. A contour based
image segmentation algorithm using morphological edge detection.
IEEE international conference on systems, man and cybernetics;
2005. IEEE: Waikoloa, HI, USA; pp. 2962-67.
[17]
Hao L. Registration-based segmentation of medical images. School of Computing National University of Singapore 2006.
[18]
Khan W. Image segmentation techniques: A survey. J Image Graph 2013; 1(4): 166-70.
[19]
Sujji GE, Lakshmi Y, Jiji GW. MRI brain image segmentation based on thresholding. Inter J Adv Comp Res 2013; 3(1): 97-101.
[20]
Dogdas B, Shattuck DW, Leahy RM. Segmentation of skull and scalp in 3‐D human MRI using mathematical morphology. Hum Brain Map 2005; 26(4): 273-85.
[21]
Qu X, Zhang W, Guo D, Cai C, Cai S, Chen Z. Iterative thresholding compressed sensing MRI based on contourlet transform. Inverse Probl Sci Eng 2010; 18(6): 737-58.
[22]
Gibbs P, Buckley DL, Blackband SJ, Horsman A. Tumour volume determination from MR images by morphological segmentation. Phys Med Biol 1996; 41(11): 2437.
[23]
Kole DK, Halder A. Automatic brain tumor detection and isolation of tumor cells from MRI images. Int J Comput Appl 2012; 39(16): 26-30.
[24]
Chevrefils C, Chériet F, Grimard G, Aubin C-E. Watershed segmentation of intervertebral disk and spinal canal from MRI images. In: Kamel M, Campilho A. (eds) Image analysis and recognition. ICIAR 2007. Lecture notes in computer science, Springer: Berlin, Heidelberg; pp. 1017-27.
[25]
Kaus MR, Warfield SK, Nabavi A, Black PM, Jolesz FA, Kikinis R. Automated segmentation of MR images of brain tumors. Radiology 2001; 218(2): 586-91.
[26]
Salman YM. Modified technique for volumetric brain tumor measurements. J Biomed Sci Eng 2009; 2(01): 16.
[27]
Pham DL, Xu C, Prince JL. Current methods in medical image segmentation 1. Annu Rev Biomed Eng 2000; 2(1): 315-37.
[28]
Sumengen B, Manjunath B. Multi-scale edge detection and image
segmentation. 13th European signal processing conference 2005.
IEEE: Antalya, Turkey; pp. 1-4.
[29]
Xiaohan Y, Yla-Jaaski J. A new algorithm for image segmentation based on region growing and edge detection.In: IEEE international symposium on circuits & systems. 516-9.
[30]
Naz S, Majeed H, Irshad H, Eds. editors. Image segmentation using fuzzy clustering: A survey. In: 6th International Conference on Emerging Technologies (ICET) 2010. IEEE: Islamabad, Pakistan; pp. 181-6.
[31]
Pednekar AS, Kakadiaris IA. Image segmentation based on fuzzy connectedness using dynamic weights. IEEE Trans Image Process 2006; 15(6): 1555-62.
[32]
Kannan S, Ramathilagam S, Pandiyarajan R. Modified bias field fuzzy C-means for effective segmentation of brain MRI. In: Gavrilova ML, Tan CJK (eds). Transactions on Computational Science VIII 2010. Lecture Notes in Computer Science: Springer, Berlin, Heidelberg; pp. 127-45.
[33]
Amza C. A review on neural network–based image segmentation techniques. De Montfort University, mechanical and manufacturing engg, the gateway leicester, LE1 9BH, United Kingdom 2012; pp. 1-23.
[34]
Suganthi D, Purushothaman S. FMRI segmentation using echo state neural network. Comput Secur 2009; 2(1): 1-9.
[35]
Si T, De A, Bhattacharjee AK. Artificial neural network based lesion segmentation of brain MRI. Communications on Applied Electronics (CAE) 2016; 4(5).
[36]
Reddick WE, Glass JO, Cook EN, Elkin TD, Deaton RJ. Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks. IEEE Trans Med Imaging 1997; 16(6): 911-8.
[37]
Magnotta VA, Heckel D, Andreasen NC, et al. Measurement of brain structures with artificial neural networks: Two-and three-dimensional applications 1. Radiology 1999; 211(3): 781-90.
[38]
Kalinić H. Atlas-based image segmentation. Survey 2009.
[39]
Michopoulou SK, Costaridou L, Panagiotopoulos E, Speller R, Panayiotakis G, Todd-Pokropek A. Atlas-based segmentation of degenerated lumbar intervertebral discs from MR images of the spine. IEEE Trans Biomed Eng 2009; 56(9): 2225-31.
[40]
Bezdek JC, Ehrlich R, Full W. FCM: The fuzzy c-means clustering algorithm. Comp Geosci 1984; 10(2): 191-203.
[41]
Wu D, Ceritoglu C, Miller MI, Mori S. Direct estimation of patient attributes from anatomical MRI based on multi-atlas voting. Neuroimage Clin 2016; 12: 570-81.
[42]
Dowling JA, Lambert J, Parker J, et al. An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy. Int J Radiat Oncol Biol Phys 2012; 83(1): e5-e11.
[43]
Lorenzo-Valdés M, Sanchez-Ortiz GI, Mohiaddin R, Rueckert D, Eds. editors. Atlas-based segmentation and tracking of 3D cardiac MR
images using non-rigid registration. In: Dohi T, Kikinis R (eds).
Medical Image Computing and Computer-Assisted Intervention-
MICCAI 2002. MICCAI 2002. Lecture Notes in Computer
Science, vol 2488. Springer, Berlin, Heidelberg.
[44]
Pham DL, Prince JL. Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imaging 1999; 18(9): 737-52.
[45]
Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001; 20(1): 45-57.
[46]
Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging 2002; 21(3): 193-9.
[47]
Yang M-S, Tsai H-S. A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction. Pattern Recognit Lett 2008; 29(12): 1713-25.
[48]
Liao L, Lin T, Li B. MRI brain image segmentation and bias field correction based on fast spatially constrained kernel clustering approach. Pattern Recognit Lett 2008; 29(10): 1580-8.
[49]
Greenspan H, Ruf A, Goldberger J. Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Trans Med Imaging 2006; 25(9): 1233-45.
[50]
Zeng J, Xie L, Liu Z-Q. Type-2 fuzzy Gaussian mixture models. Patt Recogn 2008; 41(12): 3636-43.
[51]
Li C, Xu C, Anderson AW, Gore JC. MRI tissue classification and bias field estimation based on coherent local intensity clustering: A unified energy minimization framework. Inf Process Med Imaging 2009; 21:2 88-99.
[52]
Ji Z-X, Sun Q-S, Xia D-S. A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image. Comput Med Imaging Graph 2011; 35(5): 383-97.
[53]
Ji Z, Xia Y, Sun Q, Chen Q, Xia D, Feng DD. Fuzzy local Gaussian mixture model for brain MR image segmentation. IEEE Trans Inf Technol Biomed 2012; 16(3): 339-47.
[54]
Tang H, Wu E, Ma Q, Gallagher D, Perera G, Zhuang T. MRI brain image segmentation by multi-resolution edge detection and region selection. Comput Med Imaging Graph 2000; 24(6): 349-57.
[55]
Chevrefils C, Chériet F, Grimard G, Aubin C-E. Watershed
segmentation of intervertebral disk and spinal canal from MRI
images. 4th International Conference on Image Analysis And
Recognition, ICIAR 2007, Montreal, Canada; pp.1017-27.
[56]
Wang J, Kong J, Lu Y, Qi M, Zhang B. A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints. Comput Med Imaging Graph 2008; 32(8): 685-98.
[57]
Kapur T, Grimson WEL, Wells WM, Kikinis R. Segmentation of brain tissue from magnetic resonance images. Med Image Anal 1996; 1(2): 109-27.