Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Neurometabolic Diseases in Children: Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy Features

Author(s): Direnç Özlem Aksoy* and Alpay Alkan

Volume 15, Issue 3, 2019

Page: [255 - 268] Pages: 14

DOI: 10.2174/1573405613666171123152451

Price: $65

Abstract

Background: Neurometabolic diseases are a group of diseases secondary to disorders in different metabolic pathways, which lead to white and/or gray matter of the brain involvement.

Discussion: Neurometabolic disorders are divided in two groups as dysmyelinating and demyelinating diseases. Because of wide spectrum of these disorders, there are many different classifications of neurometabolic diseases. We used the classification according to brain involvement areas. In radiological evaluation, MRI provides useful information for these disseases.

Conclusion: Magnetic Resonance Spectroscopy (MRS) provides additional metabolic information for diagnosis and follow ups in childhood with neurometabolic diseases.

Keywords: Neurometabolic diseases, MRI, magnetic resonance spectroscopy, brain, leukodystrophy, myelin.

Graphical Abstract

[1]
Valk J, Van der Knaap MS. Classification of m yelin disorders. In: Valk J, van der Knaap MS, eds. Magnetic resonance of myelin, myelination and myelin disorders. Springer-Verlag 1989: Berlin, Germany; pp: 4-8.
[2]
Becker LE. Lysosomes peroxisomes and mitochondria: Function and disorder. AJNR 1992; 13: 609-20.
[3]
Barkovich AJ Pediatric neuroimaging. 2005 Philadelphia: Lippincott Williams and Wilkins; pp.76-187.
[4]
Barker PB, Horska A. Neuroimaging in leukodystrophies. J Child Neurol 2004; 19: 559-70.
[5]
Cecil KM, Jones BV. Magnetic resonance spectroscopy of the pediatric brain. Top Magn Reson Imaging 2001; 12: 435-52.
[6]
Birken DL, Oldendorf WH. N-acetyl-L-aspartic acid: A literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci Biobehav Rev 1989; 13: 23-31.
[7]
He J, Inglese M, Li BS, Babb JS, Grossman RI, Gonen O. Relapsing-remitting multiple sclerosis: Metabolic abnormality in nonenhancing lesions and normal-appearing white matter at MR imaging; initial experience. Radiology 2005; 234: 211-7.
[8]
Narayana PA. Magnetic resonance spectroscopy in the monitoring of multiple sclerosis. J Neuroimaging 2005; 15: 46S-57S.
[9]
Burtscher IM, Holtås S. Proton MR spectroscopy in clinical routine. J Magn Reson Imaging 2001; 13: 560-7.
[10]
Cheon JE, Kim IO, Hwang YS, et al. Leukodystrophy in children: a pictorial review of MR imaging features. Radiographics 2002; 22: 461-76.
[11]
Sener RN. Maple syrup urine disease: Diffusion MRI, and proton MR spectroscopy findings. Comput Med Imaging Graph 2007; 31: 106-10.
[12]
Davison JE1, Davies NP, Wilson M, et al. MR spectroscopy-based brain metabolite profiling in propionic acidaemia: Metabolic changes in the basal ganglia during acute decompensation and effect of liver transplantation. Orphanet J Rare Dis 2011; 6: 19.
[13]
Gujar SK, Maheshwari S, Björkman-Burtscher I, Sundgren PC. Magnetic resonance spectroscopy. J Neuroophthalmol 2005; 25: 217-26.
[14]
Udow S, Bunge M, Ryner L, Mhanni AA, Salman MS. Prolonged survival and serial magnetic resonance imaging/magnetic resonance spectroscopy changes in infantile Krabbe disease. Pediatr Neurol 2012; 47: 299-302.
[15]
Loes DJ, Peters C, Krivit W. Globoid Cell Leukodystrophy: Distinguishing early-onset from late-onset disease using a brain MR imaging scoring method. AJNR 1999; 20: 316-23.
[16]
Brockmann K, Dechent P, Wilken B, Rusch O, Frahm J, Hanefeld F. Proton MRS profile of cerebral metabolic abnormalities in Krabbe disease. Neurology 2003; 60: 819-25.
[17]
Nagar VA, Ursekar MA, Krishnan P, Jankharia BG. Krabbe disease: unusual MRI findings. Pediatr Radiol 2006; 36: 61-4.
[18]
Engelen M, Kemp S, de Visser M, et al. X-linked adrenoleukodystrophy (X-ALD): Clinical presentation and guidelines for diagnosis, follow-up and management. OJRD 2012; 7: 51.
[19]
Eichler FS, Itoh R, Barker PB, et al. Proton MR spectroscopic and diffusion tensor brain MR imaging in X-linked adrenoleukodys-trophy: Initial experience. Radiology 2002; 225: 245-52.
[20]
Alkan A, Kutlu R, Aslan M, Yakinci C. Adrenoleukodystrophy: Single voxel MR spectroscopy findings (case report). Tani Girisim Radyol 2004; 10: 200-3.
[21]
Patil SA, Maegawa GH. Developing therapeutic approaches for metachromatic leukodystrophy. Drug Des Devel Ther 2013; 7: 729-45.
[22]
van Rappard DF, Boelens JJ, Wolf NI. Metachromatic leukodystrophy: Disease spectrum and approaches for treatment. Best Pract Res Clin Endocrinol Metab 2015; 29: 261-73.
[23]
Assadi M, Wang DJ, Velazquez-Rodriquez Y, Leone P. Multi-voxel 1H-MRs in metachromatic leukodystrophy. J Cent Nerv Syst Dis 2013; 5: 25-30.
[24]
Pfaendner NH, Reuner G, Pietz J, et al. MR imaging-based volumetry in patients with early-treated phenylketonuria. Am J Neuroradiol 2005; 26: 1681-5.
[25]
Sener RN. Phenylketonuria: Diffusion magnetic resonance imaging and proton magnetic resonance spectroscopy. J Comput Assist Tomogr 2003; 27: 541-3.
[26]
Phillips MD, McGraw P, Lowe MJ, Mathews VP, Hainline BE. Diffusion-weighted imaging of white matter abnormalities in patients with phenylketonuria. AJNR 2001; 22: 1583-6.
[27]
Scarabino T, Popolizio T, Tosetti M, et al. Phenylketonuria: White-matter changes assessed by 3.0-T Magnetic Resonance (MR) imaging, MR spectroscopy and MR diffusion. Radiol Med 2009; 114: 461-74.
[28]
Jan W, Zimmerman RA, Wang ZJ, Berry GT, Kaplan PB, Kaye EM. MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation. Neuroradiology 2003; 45: 393-9.
[29]
Sato T, Muroya K, Hanakawa J, et al. Neonatal case of classic maple syrup urine disease: Usefulness of 1H-MRS in early diagnosis. Pediatr Int 2014; 56: 112-5.
[30]
van der Knaap MS, Naidu S, Breiter SN, et al. Alexander disease: Diagnosis with MR imaging. AJNR 2001; 22: 541-52.
[31]
Brockmann K, Dechent P, Meins M, et al. Cerebral proton magnetic resonance spectroscopy in infantile Alexander disease. J Neurol 2003; 250: 300-6.
[32]
Kocaman G, Eryigit G, Abbink TE, et al. An unusually mild presentation of megalencephalic leukoencephalopathy with subcortical cysts. Clin Neurol Neurosurg 2013; 115: 1564-6.
[33]
van der Knaap MS, Boor I, Estévez R. Megalencephalic leukoencephalopathy with subcortical cysts: Chronic white matter oedema due to a defect in brain ion and water homoeostasis. Lancet Neurol 2012; 11: 973-85.
[34]
Tu YF, Chen CY, Huang CC, Lee CS. Vacuolating megalencephalic leukoencephalopathy with mild clinical course validated by diffusion tensor imaging and MR spectroscopy. Am J Neuroradiol 2004; 25: 1041-5.
[35]
Spalice A, Popolizio T, Parisi P. Proton MR spectroscopy in connatal Pelizaeus-Merzbacher disease. Pediatr Radiol 2000; 30: 171-5.
[36]
Pizzini F, Fatemi AS, Barker PB, et al. Proton MR spectroscopic imaging in Pelizaeus-Merzbacher disease. Am J Neuroradiol 2003; 24: 1683-9.
[37]
Lee E, Yum MS, Choi HW, et al. Magnetic resonance imaging and spectroscopic analysis in 5 cases of Pelizaeus-Merzbacher disease: Metabolic abnormalities as diagnostic tools. Korean J Pediatr 2012; 55: 397-402.
[38]
Akanashi J, Barkovich AJ, Cheng SF, et al. Brain MR imaging in neonatal hyperammonemic encephalopathy resulting from proximal urea cycle disorders. AJNR Am J Neuroradiol 2003; 24: 1184-7.
[39]
Krishna SH, McKinney AM, Lucato LT. Congenital genetic inborn errors of metabolism presenting as an adult or persisting into adulthood: Neuroimaging in the more common or recognizable disorders. Semin Ultrasound CT MR 2014; 35: 160-91.
[40]
Kojic J, Robertson PL, Quint DJ, Martin DM, Pang Y, Sundgren PC. Brain glutamine by MRS in a patient with urea cycle disorder and coma. Pediatr Neurol 2005; 32: 143-6.
[41]
Roze E, Azuar C, Menuel C, Häberle J, Guillevin R. Usefulness of magnetic resonance spectroscopy in urea cycle disorders. Pediatr Neurol 2007; 37: 222-5.
[42]
Peña JA, Cardozo JJ, Montiel CM, Molina OM, Boustany R. Serial MRI findings in the Costa Rican variant of neuronal ceroid-lipofuscinosis. Pediatr Neurol 2001; 25: 78-80.
[43]
D’Incerti L. MRI in neuronal ceroid lipofuscinosis. Neurol Sci 2000; 21: 71-3.
[44]
Baker EH, Levin SW, Zhang Z, Mukherjee AB. Evaluation of disease progression in INCL by MR spectroscopy. Ann Clin Transl Neurol 2015; 2: 797-809.
[45]
Oner AY, Cansu A, Akpek S, Serdaroglu A. Fucosidosis: MRI and MRS findings. Pediatr Radiol 2007; 37: 1050-2.
[46]
Ediz SS, Aralasmak A, Yilmaz TF, Toprak H, Yesil G, Alkan A. MRI and MRS findings in fucosidosis; a rare lysosomal storage diseas. Brain Dev 2016; 38: 435-8.
[47]
Mamourian AC, Hopkin JR, Chawla S, Poptani H. Characteristic MR spectroscopy in fucosidosis: In vitro investigation. Pediatr Radiol 2010; 40: 1446-9.
[48]
Arii J, Tanabe Y. Leigh syndrome: Serial MR imaging and clinical follow-up. AJNR Am Neuroradiol 2000; 21: 1502-9.
[49]
Sijens PE, Smit GP, Rödiger LA, et al. MR spectroscopy of the brain in Leigh syndrome. Brain Dev 2008; 30: 579-83.
[50]
Bonfante E, Koenig MK, Adejumo RB, Perinjelil V, Riascos RF. The neuroimaging of Leigh syndrome: Case series and review of the literature. Pediatr Radiol 2016; 46: 443-51.
[51]
Castillo M, Kwock L, Gren C. MELAS Syndrome: Imaging and proton MR spectroscopic findings. AJNR Am Neuroradiol 1995; 16: 233-9.
[52]
Mathews PM, Andermann F, Silver K, Karpati G, Arnold DL. Proton MR spectroscopic characterization of differences in regional brain metabolic abnormalities in mitochondrial encephalo-myopathies. Neurology 1993; 43: 2484-90.
[53]
Brismar J, Ozand PT. CT and MR of the brain in disorders of the propionate and methylmalonate metabolism. AJNR Am J Neuroradiol 1994; 15: 1459-73.
[54]
Lee C, Dineen TE, Brack M, Kirsch JE, Runge VM. The mucopolysaccharidoses: Characterization by cranial MR imaging. AJNR Am Neuroradiol 1995; 16: 1402-3.
[55]
Takahashi Y, Sukegawa K, Aoki M, et al. Evaluation of accumulated mucopolysaccharides in the brain of patients with mucopolysaccharidoses by (1)H magnetic resonance spectroscopy before and after bone marrow transplantation. Pediatr Res 2001; 49: 349-55.
[56]
Zafeiriou DI, Batzios SP. Brain and spinal MR imaging findings in mucopolysaccharidoses: A review. AJNR 2013; 34: 5-13.
[57]
Davison JE, Hendriksz CJ, Sun Y, Davies NP, Gissen P, Peet AC. Quantitative in vivo brain magnetic resonance spectroscopic monitoring of neurological involvement in mucopolysaccharidosis type II (Hunter Syndrome). J Inherit Metab Dis 2010; 33: 395-9.
[58]
Barkovich AJ, Peck WW. MR of Zellweger syndrome. AJNR Am Neuroradiol 1997; 18: 1063-70.
[59]
Groenendaal F, Bianchi MC, Battini R, et al. Proton magnetic resonance spectroscopy (1H-MRS) of the cerebrum in two young infants with Zellweger syndrome. Neuropediatrics 2001; 32: 23-7.
[60]
Rosewich H, Dechent P, Krause C, Ohlenbusch A, Brockmann K, Gärtner J. Diagnostic and prognostic value of in vivo proton MR spectroscopy for Zellweger syndrome spectrum patients. J Inherit Metab Dis 2016; 39: 869-76.
[61]
Chen CY, Zimmerman RA, Lee CC, Chen FH, Yuh YS, Hsiao HS. Neuroimaging findings in late infantile GM1 gangliosidosis. AJNR Am Neuroradiol 1998; 19: 1628-30.
[62]
Regier DS, Kwon HJ, Johnston J, et al. MRI/MRS as a surrogate marker for clinical progression in GM1 gangliosidosis. Am J Med Genet A 2016; 170: 634-44.
[63]
Inglese M, Nusbaum AO, Pastores GM, Gianutsos J, Kolodny EH, Gonen O. MR Imaging and Proton Spectroscopy of Neuronal Injury in Late-Onset GM2 Gangliosidosis. AJNR Am Neuroradiol 2005; 26: 2037-42.
[64]
Alkan A, Kutlu R, Yakinci C, Sigirci A, Aslan M, Sarac K. Infantile Sandhoff’s disease: Multivoxel magnetic resonance spectrosecopy findings. J Child Neurol 2003; 18: 425-8.
[65]
Bano S, Prasad A, Yadav SN, Chaudhary V, Garga UC. Neuro-radiological findings in GM2 gangliosidosis variant B1. J Pediatr Neurosci 2011; 6: 110-3.
[66]
Assadi M, Baseman S, Janson C, Wang DJ, Bilaniuk L, Leone P. Serial 1H-MRS in GM2 gangliosidoses. Eur J Pediatr 2008; 167: 347-52.
[67]
McAdams HP, Geyer CA, Done SL, Deigh D, Mitchell M, Ghaed VN. CT and MR imaging of Canavan disease. AJNR Am Neuroradiol 1990; 11: 397-9.
[68]
Nguyen HV, Ishak GE. Canavan disease-unusual imaging features in a child with mild clinical presentation. Pediatr Radiol 2015; 45: 457-60.
[69]
Delaney KE, Kralik SF, Hainline BE, Golomb MR. An atypical case of Canavan disease with stroke-like presentation. Pediatr Neurol 2015; 52: 218-21.
[70]
Sacher M, Fatterpekar GM, Edelstein S, Sansaricq C, Naidich TP. MRI findings in an atypical case of Kearns-Sayre syndrome: A case report. Neuroradiology 2005; 47: 241-4.
[71]
Kapeller P, Fazekas F, Offenbacher H, et al. Magnetic resonance imaging and spectroscopy of progressive cerebral involvement in Kearns Sayre Syndrome. J Neurol Sci 1996; 135: 126-30.
[72]
Alkan A, Baysal T, Yakinci C, Sigirci A, Kutlu R. Glutaric aciduria type I diagnosed after poliovirus immunization: Magnetic resonance findings. Pediatr Neurol 2002; 26: 405-7.
[73]
Kurul Semra, Cakmakçi H, Dirik E. Glutaric aciduria type 1: Proton magnetic resonance spectroscopy findings. Pediatr Neurol 2004 Sep; 31: 228-31.
[74]
Oguz KK, Ozturk A, Cila A. Diffusion-weighted MR imaging and MR spectroscopy in glutaric aciduria type 1. Neuroradiology 2005; 47: 229-34.
[75]
Moroni I, D’Incerti L, Farina L, Rimoldi M, Uziel G. Clinical, biochemical and neuroradiological findings. Neurol Sci 2000; 21: 103-8.
[76]
Steenweg ME, Salomons GS, Yapici Z, et al. L-2-Hydroxyglutaric aciduria: Pattern of MR imaging abnormalities in 56 patients. Radiology 2009; 251: 856-65.
[77]
Fourati H, Ellouze E, Ahmadi M, et al. MRI features in 17 patients with l2 hydroxyglutaric aciduria. Eur J Radiol Open 2016; 3: 245-50.
[78]
Demaerel P, Wilms G, Verdru P, Carton H, Baert AL. MRI in the diagnosis of Cockayne’s syndrome. One case. J Neuroradiol 1990; 17: 157-60.
[79]
Koob M, Rousseau F, Laugel V, et al. Neuroimaging in Cockayne Syndrome. AJNR Am J Neuroradiol 2010; 31: 1623-30.
[80]
Senol U, Haspolat S, Karaali K, Lüleci E. MR imaging of vanishing white matter. AJR Am J Roentgenol 2000; 175: 826-8.
[81]
van der Knaap MS, Barth PG, Gabreëls FJ, et al. A new leukoencephalopathy with vanishing white matter. Neurology 1997; 48: 845-55.
[82]
Mercimek-Mahmutoglu S, Salomons GS. Creatine Deficiency Syndromes. 2009 Jan 15 [Updated 2015 Dec 10]. In: Pagon RA, Adam MP, Ardinger HH, et al, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2017.
[83]
Joseph F. Clark, Kim M. Cecil. Diagnostic methods and recommendations for the cerebral creatine deficiency syndromes. Pediatr Res 2015; 77: 398-405.
[84]
Mencarelli MA, Tassini M, Pollazzon M, et al. Creatine transporter defect diagnosed by proton NMR spectroscopy in males with intellectual disability. Am J Med Genet A 2011; 155: 2446-52.
[85]
Press GA, Barshop BA, Haas RH, Nyhan WL, Glass RF, Hesselink JR. Abnormalities of the brain in nonketotic hyperglycinemia: MR manifastations. AJNR Am Neuroradiol 1989; 10: 315-21.
[86]
Heindel W, Kugel H, Roth B. Noninvasive detection of increased glycine content by proton MR spectroscopy in the brains of two infants with nonketotic hyperglycinemia. AJNR Am Neuroradiol 1993; 14: 629-35.
[87]
Manley BJ, Sokol J, Cheong JL. Intracerebral blood and MRS in neonatal nonketotic hyperglycinemia. Pediatr Neurol 2010; 42: 219-22.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy