[1]
Komeda, S.; Casini, A. Next-generation anticancer metallodrugs. Curr. Top. Med. Chem., 2012, 12(3), 219-235.
[2]
Mjos, K.D.; Orvig, C. Metallodrugs in medicinal inorganic chemistry. Chem. Rev., 2014, 114(8), 4540-4563.
[3]
Tsave, O.; Petanidis, S.; Kioseoglou, E.; Yavropoulou, M.P.; Yovos, J.G.; Anestakis, D.; Tsepa, A.; Salifoglou, A. Role of Vanadium in Cellular and Molecular Immunology: Association with Immune-Related Inflammation and Pharmacotoxicology Mechanisms. Oxid. Med. Cell. Longev., 2016, 2016, 4013639.
[4]
Dilruba, S.; Kalayda, G.V. Platinum-based drugs: past, present and future. Cancer Chemother. Pharmacol., 2016, 77(6), 1103-1124.
[5]
Kachalaki, S.; Ebrahimi, M.; Mohamed Khosroshahi, L.; Mohammadinejad, S.; Baradaran, B. Cancer chemoresistance; biochemical and molecular aspects: a brief overview. Eur. J. Pharm. Sci., 2016, 89, 20-30.
[6]
Abdullah, L.N.; Chow, E.K. Mechanisms of chemoresistance in cancer stem cells. Clin. Transl. Med., 2013, 2(1), 3.
[7]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[8]
Kibria, G.; Hatakeyama, H.; Harashima, H. Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system. Arch. Pharm. Res., 2014, 37(1), 4-15.
[9]
Burrell, R.A.; Swanton, C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol. Oncol., 2014, 8(6), 1095-1111.
[10]
Türk, D.; Hall, M.D.; Chu, B.F.; Ludwig, J.A.; Fales, H.M.; Gottesman, M.M.; Szakács, G. Identification of compounds selectively killing multidrug-resistant cancer cells. Cancer Res., 2009, 69(21), 8293-8301.
[11]
Ganguly, A.; Chakraborty, P.; Banerjee, K.; Choudhuri, S.K. The role of a Schiff base scaffold, N-(2-hydroxy acetophenone) glycinate-in overcoming multidrug resistance in cancer. Eur. J. Pharm. Sci., 2014, 51, 96-109.
[12]
Hernanda, P.Y.; Pedroza-Gonzalez, A.; Sprengers, D.; Peppelenbosch, M.P.; Pan, Q. Multipotent mesenchymal stromal cells in liver cancer: implications for tumor biology and therapy. Biochim. Biophys. Acta, 2014, 1846(2), 439-445.
[13]
Muddineti, O.S.; Ghosh, B.; Biswas, S. Current trends in using polymer coated gold nanoparticles for cancer therapy. Int. J. Pharm., 2015, 484(1-2), 252-267.
[14]
Xiong, X.; Arvizo, R.R.; Saha, S.; Robertson, D.J.; McMeekin, S.; Bhattacharya, R.; Mukherjee, P. Sensitization of ovarian cancer cells to cisplatin by gold nanoparticles. Oncotarget, 2014, 5(15), 6453-6465.
[15]
Fan, J.X.; Zheng, D.W.; Rong, L.; Zhu, J.Y.; Hong, S.; Li, C.; Xu, Z.S.; Cheng, S.X.; Zhang, X.Z. Targeting epithelial-mesenchymal transition: Metal organic network nano-complexes for preventing tumor metastasis. Biomaterials, 2017, 139, 116-126.
[16]
Zhao, X.; Huang, Q.; Jin, Y. Gold nanorod delivery of LSD1 siRNA induces human mesenchymal stem cell differentiation. Mater. Sci. Eng. C, 2015, 54, 142-149.
[17]
Liu, Y.; Chen, C.; Qian, P.; Lu, X.; Sun, B.; Zhang, X.; Wang, L.; Gao, X.; Li, H.; Chen, Z.; Tang, J.; Zhang, W.; Dong, J.; Bai, R.; Lobie, P.E.; Wu, Q.; Liu, S.; Zhang, H.; Zhao, F.; Wicha, M.S.; Zhu, T.; Zhao, Y. Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor. Nat. Commun., 2015, 6, 5988.
[18]
Geukes Foppen, M.H.; Donia, M.; Svane, I.M.; Haanen, J.B. Tumor-infiltrating lymphocytes for the treatment of metastatic cancer. Mol. Oncol., 2015, 9(10), 1918-1935.
[19]
Rei, M.; Pennington, D.J.; Silva-Santos, B. The emerging Protumor role of γδ T lymphocytes: implications for cancer immunotherapy. Cancer Res., 2015, 75(5), 798-802.
[20]
Montani, M.; Pazmay, G.V.B.; Hysi, A.; Lupidi, G.; Pettinari, R.; Gambini, V.; Tilio, M.; Marchetti, F.; Pettinari, C.; Ferraro, S.; Iezzi, M.; Marchini, C.; Amici, A. The water soluble ruthenium(II) organometallic compound [Ru(p-cymene)(bis(3,5 dimethylpyrazol-1-yl)methane)Cl]Cl suppresses triple negative breast cancer growth by inhibiting tumor infiltration of regulatory T cells. Pharmacol. Res., 2016, 107, 282-290.
[21]
Pacor, S.; Zorzet, S.; Cocchietto, M.; Bacac, M.; Vadori, M.; Turrin, C.; Gava, B.; Castellarin, A.; Sava, G. Intratumoral NAMI-A treatment triggers metastasis reduction, which correlates to CD44 regulation and tumor infiltrating lymphocyte recruitment. J. Pharmacol. Exp. Ther., 2004, 310(2), 737-744.
[22]
Crowe, A.; Jackaman, C.; Beddoes, K.M.; Ricciardo, B.; Nelson, D.J. Rapid copper acquisition by developing murine mesothelioma: decreasing bioavailable copper slows tumor growth, normalizes vessels and promotes T cell infiltration. PLoS One, 2013, 8(8), e73684.
[23]
Tsai, Y.S.; Chen, Y.H.; Cheng, P.C.; Tsai, H.T.; Shiau, A.L.; Tzai, T.S.; Wu, C.L. TGF-β1 conjugated to gold nanoparticles results in protein conformational changes and attenuates the biological function. Small, 2013, 9(12), 2119-2128.
[24]
Zhang, C.; Guan, Y.; Sun, Y.; Ai, D.; Guo, Q. Tumor heterogeneity and circulating tumor cells. Cancer Lett., 2016, 374(2), 216-223.
[25]
Wu, X.; Luo, L.; Yang, S.; Ma, X.; Li, Y.; Dong, C.; Tian, Y.; Zhang, L.; Shen, Z.; Wu, A. Improved SERS Nanoparticles for Direct Detection of Circulating Tumor Cells in the Blood. ACS Appl. Mater. Interfaces, 2015, 7(18), 9965-9971.
[26]
Jain, S.; Cohen, J.; Ward, M.M.; Kornhauser, N.; Chuang, E.; Cigler, T.; Moore, A.; Donovan, D.; Lam, C.; Cobham, M.V.; Schneider, S.; Hurtado Rúa, S.M.; Benkert, S.; Mathijsen Greenwood, C.; Zelkowitz, R.; Warren, J.D.; Lane, M.E.; Mittal, V.; Rafii, S.; Vahdat, L.T. Tetrathiomolybdate-associated copper depletion decreases circulating endothelial progenitor cells in women with breast cancer at high risk of relapse. Ann. Oncol., 2013, 24(6), 1491-1498.
[27]
Huang, X.; O’Connor, R.; Kwizera, E.A. Gold Nanoparticle Based Platforms for Circulating Cancer Marker Detection. Nanotheranostics, 2017, 1(1), 80-102.
[28]
Xing, Y.; Zhao, S.; Zhou, B.P.; Mi, J. Metabolic reprogramming of the tumour microenvironment. FEBS J., 2015, 282(20), 3892-3898.
[29]
Chen, Y.; Wang, Z.; Xu, M.; Wang, X.; Liu, R.; Liu, Q.; Zhang, Z.; Xia, T.; Zhao, J.; Jiang, G.; Xu, Y.; Liu, S. Nanosilver incurs an adaptive shunt of energy metabolism mode to glycolysis in tumor and nontumor cells. ACS Nano, 2014, 8(6), 5813-5825.
[30]
Yao, Y.; Lu, Y.; Chen, W.C.; Jiang, Y.; Cheng, T.; Ma, Y.; Lu, L.; Dai, W. Cobalt and nickel stabilize stem cell transcription factor OCT4 through modulating its sumoylation and ubiquitination. PLoS One, 2014, 9(1), e86620.
[31]
Chatterjee, S.; Mookerjee, A.; Basu, J.M.; Chakraborty, P.; Ganguly, A.; Adhikary, A.; Mukhopadhyay, D.; Ganguly, S.; Banerjee, R.; Ashraf, M.; Biswas, J.; Das, P.K.; Sa, G.; Chatterjee, M.; Das, T.; Choudhuri, S.K. A novel copper chelate modulates tumor associated macrophages to promote anti-tumor response of T cells. PLoS One, 2009, 4(9), e7048.
[32]
Karagiannis, G.S.; Poutahidis, T.; Erdman, S.E.; Kirsch, R.; Riddell, R.H.; Diamandis, E.P. Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol. Cancer Res., 2012, 10(11), 1403-1418.
[33]
Sack, M.; Alili, L.; Karaman, E.; Das, S.; Gupta, A.; Seal, S.; Brenneisen, P. Combination of conventional chemotherapeutics with redox-active cerium oxide nanoparticles--a novel aspect in cancer therapy. Mol. Cancer Ther., 2014, 13(7), 1740-1749.
[34]
Ng, C.T.; Yung, L.Y.; Swa, H.L.; Poh, R.W.; Gunaratne, J.; Bay, B.H. Altered protein expression profile associated with phenotypic changes in lung fibroblasts co-cultured with gold nanoparticle-treated small airway epithelial cells. Biomaterials, 2015, 39, 31-38.
[35]
Jain, R.K.; Martin, J.D.; Stylianopoulos, T. The role of mechanical forces in tumor growth and therapy. Annu. Rev. Biomed. Eng., 2014, 16, 321-346.
[36]
Crusz, S.M.; Balkwill, F.R. Inflammation and cancer: advances and new agents. Nat. Rev. Clin. Oncol., 2015, 12(10), 584-596.
[37]
Chua, A.C.; Klopcic, B.R.; Ho, D.S.; Fu, S.K.; Forrest, C.H.; Croft, K.D.; Olynyk, J.K.; Lawrance, I.C.; Trinder, D. Dietary iron enhances colonic inflammation and IL-6/IL-11-Stat3 signaling promoting colonic tumor development in mice. PLoS One, 2013, 8(11), e78850.
[38]
He, W.; Li, Y.; Tian, J.; Jiang, N.; Du, B.; Peng, Y. Optimized mixture of As, Cd and Pb induce mitochondria-mediated apoptosis in C6-glioma via astroglial activation, inflammation and P38-MAPK. Am. J. Cancer Res., 2015, 5(8), 2396-2408.
[39]
Wan, R.; Mo, Y.; Chien, S.; Li, Y.; Li, Y.; Tollerud, D.J.; Zhang, Q. The role of hypoxia inducible factor-1α in the increased MMP-2 and MMP-9 production by human monocytes exposed to nickel nanoparticles. Nanotoxicology, 2011, 5(4), 568-582.
[40]
Pyzer, A.R.; Cole, L.; Rosenblatt, J.; Avigan, D.E. Myeloid-derived suppressor cells as effectors of immune suppression in cancer. Int. J. Cancer, 2016, 139(9), 1915-1926.
[41]
Chakraborty, P.; Das, S.; Banerjee, K.; Sinha, A.; Roy, S.; Chatterjee, M.; Choudhuri, S.K. A copper chelate selectively triggers apoptosis in myeloid-derived suppressor cells in a drug-resistant tumor model and enhances antitumor immune response. Immunopharmacol. Immunotoxicol., 2014, 36(2), 165-175.
[42]
Das, S.; Banerjee, K.; Roy, S.; Majumder, S.; Chatterjee, M.; Majumdar, S.; Choudhuri, S.K. Mn complex-mediated enhancement of antitumor response through modulating myeloid-derived suppressor cells in drug-resistant tumor. In Vivo, 2014, 28(5), 909-918.
[43]
Younos, I.H.; Dafferner, A.J.; Gulen, D.; Britton, H.C.; Talmadge, J.E. Tumor regulation of myeloid-derived suppressor cell proliferation and trafficking. Int. Immunopharmacol., 2012, 13(3), 245-256.
[44]
Farrer, D.G.; Hueber, S.; Laiosa, M.D.; Eckles, K.G.; McCabe, M.J., Jr Reduction of myeloid suppressor cell derived nitric oxide provides a mechanistic basis of lead enhancement of alloreactive CD4(+) T cell proliferation. Toxicol. Appl. Pharmacol., 2008, 229(2), 135-145.
[45]
Tan, C.P.; Lu, Y.Y.; Ji, L.N.; Mao, Z.W. Metallomics insights into the programmed cell death induced by metal-based anticancer compounds. Metallomics, 2014, 6(5), 978-995.
[46]
Chatterjee, S.; Sarkar, S.; Bhattacharya, S. Toxic metals and autophagy. Chem. Res. Toxicol., 2014, 27(11), 1887-1900.
[47]
Lin, Y.X.; Gao, Y.J.; Wang, Y.; Qiao, Z.Y.; Fan, G.; Qiao, S.L.; Zhang, R.X.; Wang, L.; Wang, H. pH-Sensitive Polymeric Nanoparticles with Gold(I) Compound Payloads Synergistically Induce Cancer Cell Death through Modulation of Autophagy. Mol. Pharm., 2015, 12(8), 2869-2878.
[48]
Zhong, W.; Zhu, H.; Sheng, F.; Tian, Y.; Zhou, J.; Chen, Y.; Li, S.; Lin, J. Activation of the MAPK11/12/13/14 (p38 MAPK) pathway regulates the transcription of autophagy genes in response to oxidative stress induced by a novel copper complex in HeLa cells. Autophagy, 2014, 10(7), 1285-1300.
[49]
Laha, D.; Pramanik, A.; Maity, J.; Mukherjee, A.; Pramanik, P.; Laskar, A.; Karmakar, P. Interplay between autophagy and apoptosis mediated by copper oxide nanoparticles in human breast cancer cells MCF7. Biochim. Biophys. Acta, 2014, 1840(1), 1-9.
[50]
Whiteside, T.L. Exosomes and tumor-mediated immune suppression. J. Clin. Invest., 2016, 126(4), 1216-1223.
[51]
Alhasan, A.H.; Patel, P.C.; Choi, C.H.; Mirkin, C.A. Exosome encased spherical nucleic acid gold nanoparticle conjugates as potent microRNA regulation agents. Small, 2014, 10(1), 186-192.
[52]
Malhotra, H.; Sheokand, N.; Kumar, S.; Chauhan, A.S.; Kumar, M.; Jakhar, P.; Boradia, V.M.; Raje, C.I.; Raje, M. Exosomes: Tunable Nano Vehicles for Macromolecular Delivery of Transferrin and Lactoferrin to Specific Intracellular Compartment. J. Biomed. Nanotechnol., 2016, 12(5), 1101-1114.
[53]
De Stefani, D.; Patron, M.; Rizzuto, R. Structure and function of the mitochondrial calcium uniporter complex. Biochim. Biophys. Acta, 2015, 1853(9), 2006-2011.
[54]
Uzhachenko, R.; Shanker, A.; Yarbrough, W.G.; Ivanova, A.V. Mitochondria, calcium, and tumor suppressor Fus1: At the crossroad of cancer, inflammation, and autoimmunity. Oncotarget, 2015, 6(25), 20754-20772.
[55]
Hajrezaie, M.; Paydar, M.; Looi, C.Y.; Moghadamtousi, S.Z.; Hassandarvish, P.; Salga, M.S.; Karimian, H.; Shams, K.; Zahedifard, M.; Majid, N.A.; Ali, H.M.; Abdulla, M.A. Apoptotic effect of novel Schiff based CdCl2(C14H21N3O2) complex is mediated via activation of the mitochondrial pathway in colon cancer cells. Sci. Rep., 2015, 5, 9097.
[56]
Wang, Y.; Yang, F.; Zhang, H.X.; Zi, X.Y.; Pan, X.H.; Chen, F.; Luo, W.D.; Li, J.X.; Zhu, H.Y.; Hu, Y.P. Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria. Cell Death Dis., 2013, 4, e783.
[57]
Bhana, S.; Wang, Y.; Huang, X. Nanotechnology for enrichment and detection of circulating tumor cells. Nanomedicine (Lond.), 2015, 10(12), 1973-1990.
[58]
Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev., 2012, 41(7), 2740-2779.
[59]
Roma-Rodrigues, C.; Raposo, L.R.; Cabral, R.; Paradinha, F.; Baptista, P.V.; Fernandes, A.R. Tumor Microenvironment Modulation via Gold Nanoparticles Targeting Malicious Exosomes: Implications for Cancer Diagnostics and Therapy. Int. J. Mol. Sci., 2017, 18(1), 162.
[60]
Luo, Y.H.; Chang, L.W.; Lin, P. Metal-Based Nanoparticles and the Immune System: Activation, Inflammation, and Potential Applications. BioMed Res. Int., 2015, 2015, 143720.
[61]
Sanchez-Cano, C.; Romero-Canelón, I.; Yang, Y.; Hands-Portman, I.J.; Bohic, S.; Cloetens, P.; Sadler, P.J. Synchrotron X-Ray Fluorescence Nanoprobe Reveals Target Sites for Organo-Osmium Complex in Human Ovarian Cancer Cells. Chemistry, 2017, 23(11), 2512-2516.
[62]
Nima, Z.A.; Mahmood, M.; Xu, Y.; Mustafa, T.; Watanabe, F.; Nedosekin, D.A.; Juratli, M.A.; Fahmi, T.; Galanzha, E.I.; Nolan, J.P.; Basnakian, A.G.; Zharov, V.P.; Biris, A.S. Circulating tumor cell identification by functionalized silver-gold nanorods with multicolor, super-enhanced SERS and photothermal resonances. Sci. Rep., 2014, 4, 4752.
[63]
Almeida, J.P.; Figueroa, E.R.; Drezek, R.A. Gold nanoparticle mediated cancer immunotherapy. Nanomedicine (Lond.), 2014, 10(3), 503-514.