Review Article

类固醇代谢组学在生物标志物发现方面的最新进展和挑战

卷 26, 期 1, 2019

页: [29 - 45] 页: 17

弟呕挨: 10.2174/0929867324666171113120810

价格: $65

摘要

背景:类固醇激素属于一类低分子量的化合物,它们负责维持机体的各种功能,因此,它们的准确评估对生物合成缺陷的评估至关重要。发展可靠的疾病诊断方法对于提高早期发现与类固醇生成改变有关的各种疾病至关重要。目前,代谢组学领域在诊断方法的敏感性和特异性方面与传统的诊断方法相比有了一些改进。结合连字符技术和模式识别方法,可以对类固醇代谢途径的微小变化进行综合评估,并可作为生物标志物发现的工具。 方法:我们对文献进行了广泛的检索,并将各种文献数据库应用于同行评议的文章中,重点介绍了将连字符技术和模式识别方法应用于类固醇代谢组学方法中的生物标志物发现。 结果:综述了类固醇代谢组学的优势、挑战和最新进展。我们介绍了样本采集和制备方法、生物材料中类固醇激素的分离和检测方法、数据分析和解释,以及类固醇代谢组学在生物标志物发现(癌症、精神和中枢神经系统疾病、内分泌疾病、药物监测)中的应用实例。治疗和兴奋剂控制)。 结论:本文对代谢组学在生物标志物发现中的应用有一定的参考价值,特别是对类固醇激素合成和代谢紊乱的研究。

关键词: 代谢组学,生物标志物,类固醇激素,代谢谱,内分泌疾病,色谱,质谱。

[1]
Goodacre, R.; Vaidyanathan, S.; Dunn, W.B.; Harrigan, G.G.; Kell, D.B. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol., 2004, 22, 245-252.
[2]
Morel, N.M.; Holland, J.M.; van der Greef, J.; Marple, E.W.; Clish, C.; Loscalzo, J.; Naylor, S. Primer on medical genomics. Part XIV: Introduction to systems biology--a new approach to understanding disease and treatment. Mayo Clin. Proc., 2004, 79(5), 651-658.
[3]
Peng, B.; Li, H.; Peng, X.X. Functional metabolomics: from biomarker discovery to metabolome reprogramming. Protein Cell, 2015, 6(9), 628-637.
[4]
Zhang, A.; Sun, H.; Wang, P.; Han, Y.; Wang, X. Modern analytical techniques in metabolomics analysis. Modern analytical techniques in metabolomics analysis. Analyst, 2012, 137(2), 293-300.
[5]
Gowda, G.A.N.; Zhang, S.; Gu, H.; Asiago, V.; Shanaiah, N.; Raftery, D. Metabolomics-based Methods for Early Disease Diagnostics: A Review. Expert Rev. Mol. Diagn., 2008, 8(5), 617-633.
[6]
Gebregiworgis, T.; Powers, R. Application of NMR metabolomics to search for human disease biomarkers. Comb. Chem. High Throughput Screen., 2012, 15(8), 595-610.
[7]
Oliver, S.G. Functional genomics: lessons from yeast. Philos. Trans. R. Soc. Lond. B, 2002, 357, 17-23.
[8]
Ramirez, T.; Daneshian, M.; Kamp, H.; Bois, F.Y.; Clench, M.R.; Coen, M.; Donley, B.; Fischer, S.M.; Ekman, D.R.; Fabian, E.; Guillou, C.; Heuer, J.; Hogberg, H.T.; Jungnickel, H.; Keun, H.C.; Krennrich, G.; Krupp, E.; Luch, A.; Noor, F.; Peter, E.; Riefke, B.; Seymour, M.; Skinner, N.; Smirnova, L.; Verheij, E.; Wagner, S.; Hartung, T.; van Ravenzwaay, B.; Leist, M. Metabolomics in toxicology and preclinical research. ALTEX, 2013, 30(2), 209-225.
[9]
Roberts, L.D.; Souza, A.L.; Gerszten, R.E.; Clish, C.B. Targeted Metabolomics. In: Curr. Protoc. Mol. Biol; , 2012; Chapter 30, p. Unit30.2, 1-24.
[10]
Cajka, T.; Fiehn, O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal. Chem., 2016, 88(1), 524-545.
[11]
Monteiro, M.S.; Carvalho, M.; Bastos, M.L.; Guedes de Pinho, P. Metabolomics analysis for biomarker discovery: advances and challenges. Curr. Med. Chem., 2013, 20(2), 257-271.
[12]
Nicholson, J.K.; Lindon, J.C. Systems biology: Metabonomics. Nature, 2008, 455(7216), 1054-1056.
[13]
Kitteringham, N.R.; Jenkins, R.E.; Lane, C.S.; Elliott, V.L.; Park, B.K. Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(13), 1229-1239.
[14]
Zhang, A.; Hui, Sun H.; Yan, G.; Wang, P.; Wang, X. Metabolomics for biomarker discovery: Moving to the clinic. BioMed Res. Int., 2015, 354671, 1-6.
[15]
Mayeux, R. Biomarkers: Potential Uses and Limitations. NeuroRx, 2004, 2, 182-188.
[16]
Shackleton, C.H.L. Profiling steroid hormones and urinary steroids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 1986, 379, 91-156.
[17]
Shackleton, C.H.L. Mass spectrometry: application to steroid and peptide research. Endocr. Rev., 1985, 6, 441-486.
[18]
Sanderson, J.T. The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicol. Sci., 2006, 94(1), 3-21.
[19]
Hammond, G.L. Plasma steroid-binding proteins: primary gatekeepers of steroid hormone action. J. Endocrinol., 2016, 230(1), R13-R25.
[20]
Lord, R.S.; J., Bralley A. Laboratory Evaluations for Integrative and Functional Medicine, 2nd ed; Metametrix Institute, 2008.
[21]
Kotłowska, A. Application of steroid hormone metabolomics in search of biomarkers in clinical research. Drug Dev. Res., 2012, 73(7), 381-389.
[22]
Oresic, M. Metabolomics, a novel tool for studies of nutrition, metabolism and lipid dysfunction. Nutr. Metab. Cardiovasc. Dis., 2009, 19(11), 816-824.
[23]
Mulvihill, M.M.; Nomura, D.K. Metabolomic strategies to map functions of metabolic pathways. Am. J. Physiol. Endocrinol. Metab., 2014, 307(3), E237-E244.
[24]
Mandrekar, S.J.; Sargent, D.J. Clinical trial designs for predictive biomarker validation: one size does not fit all. J. Biopharm. Stat., 2009, 19(3), 530-542.
[25]
Rege, J.; Rainey, W.E. The steroid metabolome of adrenarche. J. Endocrinol., 2012, 214(2), 133-143.
[26]
Kushnir, M.M.; Rockwood, A.L.; Roberts, W.L.; Yue, B.; Bergquist, J.; Meikle, A.W. Liquid chromatography tandem mass spectrometry for analysis of steroids in clinical laboratories. Clin. Biochem., 2011, 44(1), 77-88.
[27]
Kotłowska, A.; Sworczak, K.; Stepnowski, P. Urine metabolomics analysis for adrenal incidentaloma activity detection and biomarker discovery. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(5-6), 359-363.
[28]
Caruso, D.; Melis, M.; Fenu, G.; Giatti, S.; Romano, S.; Grimoldi, M.; Crippa, D.; Marrosu, M.G.; Cavaletti, G.; Melcangi, R.C. Neuroactive steroid levels in plasma and cerebrospinal fluid of male multiple sclerosis patients. J. Neurochem., 2014, 130(4), 591-597.
[29]
Flores-Valverde, A.M.; Hill, E.M. Methodology for profiling the steroid metabolome in animal tissues using ultraperformance liquid chromatography-electrospray-time-of-flight mass spectrometry. Anal. Chem., 2008, 80(22), 8771-8779.
[30]
McDonald, J.G.; Matthew, S.; Auchus, R.J. Steroid profiling by gas chromatography-mass spectrometry and high performance liquid chromatography-mass spectrometry for adrenal diseases. Horm. Cancer, 2011, 2(6), 324-332.
[31]
Ceglarek, U.; Werner, M.; Kortz, L.; Körner, A.; Kiess, W.; Thiery, J.; Kratzsch, J. Preclinical challenges in steroid analysis of human samples. J. Steroid Biochem. Mol. Biol., 2010, 121(3-5), 505-512.
[32]
Toone, R.J.; Peacock, O.J.; Smith, A.A.; Thompson, D.; Drawer, S.; Cook, C.; Stokes, K.A. Measurement of steroid hormones in saliva: Effects of sample storage condition. Scand. J. Clin. Lab. Invest., 2013, 73(8), 615-621.
[33]
Taylor, P.J. Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin. Biochem., 2005, 38(4), 328-334.
[34]
Fischer, R.; Bowness, P.; Kessler, B.M. Two birds with one stone: Doing metabolomics with your proteomics kit. Proteomics, 2013, 13(23-24), 3371-3386.
[35]
Bruce, S.J.; Tavazzi, I.; Parisod, V.; Rezzi, S.; Kochhar, S.; Guy, P.A. Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Anal. Chem., 2009, 81(9), 3285-3296.
[36]
Broccardo, C.J.; Schauer, K.L.; Kohrt, W.M.; Schwartz, R.S.; Murphy, J.P.; Prenni, J.E. Multiplexed analysis of steroid hormones in human serum using novel microflow tile technology and LC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 934, 16-21.
[37]
Bylda, C.; Thiele, R.; Kobolda, U.; Volmer, D.A. Recent advances in sample preparation techniques to overcome difficulties encountered during quantitative analysis of small molecules from biofluids using LC-MS/MS. Analyst, 2014, 139, 2265-2276.
[38]
Koren, L.; Ng, E.S.; Soma, K.K.; Wynne-Edwards, K.E. Sample preparation and liquid chromatography-tandem mass spectrometry for multiple steroids in mammalian and avian circulation. PLoS One, 2012, 7(2), e32496.
[39]
Noppe, H.; Verheyden, K.; Gillis, W.; Courtheyn, D.; Vanthemsche, P.; De Brabander, H.F. Multi-analyte approach for the determination of ng L(-1) levels of steroid hormones in unidentified aqueous samples. Anal. Chim. Acta, 2007, 586(1-2), 22-29.
[40]
Allende, F.; Solari, S.; Campino, C.; Carvajal, C.A.; Lagos, C.F.; Vecchiola, A.; Valdivia, C.; Baudrand, R.; Owen, G.I.; Fardella, C.E. LC-MS/MS method for the simultaneous determination of free urinary steroids. Chromatographia, 2014, 77, 637-642.
[41]
Moon, J.Y.; Kim, K.J.; Moon, M.H.; Chung, B.C.; Choi, M.H. A novel GC-MS method in urinary estrogen analysis from postmenopausal women with osteoporosis. J. Lipid Res., 2011, 52(8), 1595-1603.
[42]
Kaklamanos, G.; Theodoridis, G.; Dabalis, T. Determination of anabolic steroids in muscle tissue by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2009, 1216(46), 8072-8079.
[43]
Chen, J.; Liang, Q.; Hua, H.; Wang, Y.; Luo, G.; Hu, M.; Na, Y. Simultaneous determination of 15 steroids in rat blood via gas chromatography-mass spectrometry to evaluate the impact of emasculation on adrenal. Talanta, 2009, 80(2), 826-832.
[44]
Jung, H.J.; Kim, S.J.; Lee, W.Y.; Chung, B.C.; Choi, M.H. Gas chromatography/mass spectrometry based hair steroid profiling may reveal pathogenesis in hair follicles of the scalp. Rapid Commun. Mass Spectrom., 2011, 25(9), 1184-1192.
[45]
Choi, M.H.; Moon, J.Y.; Cho, S.H.; Chung, B.C.; Lee, E.J. Metabolic alteration of urinary steroids in pre- and post-menopausal women, and men with papillary thyroid carcinoma. BMC Cancer, 2011, 11, 342.
[46]
Aufartová, J.; Mahugo-Santana, C.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J.; Nováková, L.; Solich, P. Determination of steroid hormones in biological and environmental samples using green microextraction techniques: an overview. Anal. Chim. Acta, 2011, 704(1-2), 33-46.
[47]
Peñalver, A.; Pocurull, E.; Borrull, F.; Marcé, R.M. Method based on solid-phase microextraction--high-performance liquid chromatography with UV and electrochemical detection to determine estrogenic compounds in water samples. J. Chromatogr. A, 2002, 964(1-2), 153-160.
[48]
Zhang, Z.; Duan, H.; Zhang, L.; Chen, X.; Liu, W.; Chen, G. Direct determination of anabolic steroids in pig urine by a new SPME-GC-MS method. Talanta, 2009, 78(3), 1083-1089.
[49]
Yang, L.; Luan, T.; Lan, C. Solid-phase microextraction with on-fiber silylation for simultaneous determinations of endocrine disrupting chemicals and steroid hormones by gas chromatography-mass spectrometry. J. Chromatogr. A, 2006, 1104(1-2), 23-32.
[50]
Vo Duy, S.; Fayad, P.B.; Barbeau, B.; Prévost, M.; Sauvé, S. Using a novel sol-gel stir bar sorptive extraction method for the analysis of steroid hormones in water by laser diode thermal desorption/atmospheric chemical ionization tandem mass spectrometry. Talanta, 2012, 101, 337-345.
[51]
Huang, X.; Qiu, N.; Yuan, D.; Huang, B. A novel stir bar sorptive extraction coating based on monolithic material for apolar, polar organic compounds and heavy metal ions. Talanta, 2009, 78(1), 101-106.
[52]
Huang, X.; Yuan, D.; Huang, B. Determination of steroid sex hormones in urine matrix by stir bar sorptive extraction based on monolithic material and liquid chromatography with diode array detection. Talanta, 2008, 75(1), 172-177.
[53]
Tienpont, B.; David, F.; Desmet, K.; Sandra, P. Stir bar sorptive extraction-thermal desorption-capillary GC-MS applied to biological fluids. Anal. Bioanal. Chem., 2002, 373(1-2), 46-55.
[54]
Doué, M.; Bichon, E.; Dervilly-Pinel, G.; Pichon, V.; Chapuis-Hugon, F.; Lesellier, E.; West, C.; Monteau, F.; Le Bizec, B. Molecularly imprinted polymer applied to the selective isolation of urinary steroid hormones: an efficient tool in the control of natural steroid hormones abuse in cattle. J. Chromatogr. A, 2012, 1270, 51-61.
[55]
Gañán, J.; Morante-Zarcero, S.; Gallego-Picó, A.; Garcinuño, R.M.; Fernández-Hernando, P.; Sierra, I. Evaluation of a molecularly imprinted polymer for determination of steroids in goat milk by matrix solid phase dispersion. Talanta, 2014, 126, 157-162.
[56]
Gadzała-Kopciuch, R.; Ricanyová, J.; Buszewski, B. Isolation and detection of steroids from human urine by molecularly imprinted solid-phase extraction and liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(11-12), 1177-1184.
[57]
Ferchaud, V.; Courcoux, P.; Le Bizec, B.; Monteau, F.; André, F. Enzymatic hydrolysis of conjugated steroid metabolites: search for optimum conditions using response surface methodology. Analyst, 2000, 125(12), 2255-2259.
[58]
Shibasaki, H.; Tanabe, C.; Furuta, T.; Kasuya, Y. Hydrolysis of conjugated steroids by the combined use of beta-glucuronidase preparations from helix pomatia and ampullaria: determination of urinary cortisol and its metabolites. Steroids, 2001, 66(11), 795-801.
[59]
Bradlow, H.L. In: Chemical and Biological Aspects of Steroid Conjugation; Bernstein, S.; Solomon, S., Eds.; Springer Berlin Heidelberg, 1970, pp. 131-181.
[60]
Sadanala, K.C.; Lee, J.; Chung, B.C.; Choi, M.H. Targeted metabolite profiling: Sample preparation techniques for GC-MS-based steroid analysis. Mass Spectrometry Letters, 2012, 3(1), 4-9.
[61]
Zaikin, V.; Halket, J.M. A Handbook of Derivatives for Mass Spectrometry; IM Publications LPP, 2009.
[62]
Gao, S.; Zhang, Z.P.; Karnes, H.T. Sensitivity enhancement in liquid chromatography/atmospheric pressure ionization mass spectrometry using derivatization and mobile phase additives. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 825(2), 98-110.
[63]
Kirk, J.M.; Tarbin, J.; Keely, B.J. Analysis of androgenic steroid Girard P hydrazones using multistage tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2006, 20(8), 1247-1252.
[64]
Athanasiadou, I.; Angelis, Y.S.; Lyris, E.; Georgakopoulos, C. Chemical derivatization to enhance ionization of anabolic steroids in LC-MS for doping-control analysis. TrAC, 2013, 42, 137-156.
[65]
Gao, W.; Kirschbaum, C.; Grass, J. Stalder T. LC-MS based analysis of endogenous steroid hormones in human hair. J. Steroid Biochem. Mol. Biol., 2016, 162, 92-99.
[66]
Stanczyk, F.Z.; Clarke, N.J. Advantages and challenges of mass spectrometry assays for steroid hormones. J. Steroid Biochem. Mol. Biol., 2010, 121(3-5), 491-495.
[67]
Plenis, A.; Miękus, N.; Olędzka, I.; Bączek, T.; Lewczuk, A.; Woźniak, Z.; Koszałka, P.; Seroczyńska, B.; Skokowski, J. Chemometric evaluation of urinary steroid hormone levels as potential biomarkers of neuroendocrine tumors. Molecules, 2013, 18(10), 12857-1276.
[68]
Almeida, C.; Nogueira, J.M. Determination of steroid sex hormones in water and urine matrices by stir bar sorptive extraction and liquid chromatography with diode array detection. J. Pharm. Biomed. Anal., 2006, 41(4), 1303-1311.
[69]
Shimada, K.; Mitamura, K.; Higashi, T. Gas chromatography and high-performance liquid chromatography of natural steroids. J. Chromatogr. A, 2001, 935(1-2), 141-172.
[70]
Juricskay, S.; Telegdy, E. Urinary steroids in women with androgenic alopecia. Clin. Biochem., 2000, 33(2), 97-101.
[71]
Krone, N.; Hughes, B.A.; Lavery, G.G.; Stewart, P.M.; Arlt, W.; Shackleton, C.H.L. Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). J. Steroid Biochem. Mol. Biol., 2010, 121(3-5), 496-504.
[72]
Penning, T.M.; Lee, S.H.; Jin, Y.; Gutierrez, A.; Blair, I.A. Liquid chromatography-mass spectrometry (LC-MS) of steroid hormone metabolites and its applications. J. Steroid Biochem. Mol. Biol., 2010, 121(3-5), 546-555.
[73]
Leinonen, A.; Kuuranne, T.; Kostiainen, R. Liquid chromatography/mass spectrometry in anabolic steroid analysis--optimization and comparison of three ionization techniques: electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization. J. Mass Spectrom., 2002, 37(7), 693-698.
[74]
Annesley, T.M. Ion suppression in mass spectrometry. Clin. Chem., 2003, 49(7), 1041-1044.
[75]
Soldin, S.J.; Soldin, O.P. Steroid hormone analysis by tandem mass spectrometry. Clin. Chem., 2009, 55(6), 1061-1066.
[76]
Gertsman, I.; Gangoiti, J.A.; Barshop, B.A. Validation of a dual LC-HRMS platform for clinical metabolic diagnosis in serum, bridging quantitative analysis and untargeted metabolomics. Metabolomics, 2014, 10(2), 312-323.
[77]
Haneef, J.; Shaharyar, M.; Husain, A.; Rashid, M.; Mishra, R.; Parveen, S.; Ahmed, N.; Pal, M.; Kumar, D. Application of LC-MS/MS for quantitative analysis of glucocorticoids and stimulants in biological fluids. Journal of Pharmaceutical Analysis, 2013, 3(5), 341-348.
[78]
Lamparczyk, H. CRC Handbook of Chromatography: Analysis and Characterization of Steroids; CRC Press, 1992.
[79]
Kotłowska, A.; Maliński, E.; Sworczak, K.; Kumirska, J.; Stepnowski, P. The urinary steroid profile in patients diagnosed with adrenal incidentaloma. Clin. Biochem., 2009, 42(6), 448-454.
[80]
Caulfield, M.P.; Lynn, T.; Gottschalk, M.E.; Jones, K.L.; Taylor, N.F.; Malunowicz, E.M.; Shackleton, C.H.L.; Reitz, R.E.; Fisher, D.A. The diagnosis of congenital adrenal hyperplasia in the newborn by gas chromatography/mass spectrometry analysis of random urine specimens. J. Clin. Endocrinol. Metab., 2002, 87(8), 3682-3690.
[81]
Moon, J.; Ha, Y.; Moon, M.; Chung, B.; Choi, M. Systematic error in gas chromatography-mass spectrometry based quantitation of hydrolyzed urinary steroids. Cancer Epidemiol. Biomarkers Prev., 2010, 19, 388-397.
[82]
Moon, J.; Jung, H.; Moon, M.; Chung, B.; Choi, M. Heat-map visualization of gas chromatography-mass spectrometry based quantitative signatures on second steroids metabolism. J. Am. Soc. Mass Spectrom., 2009, 20, 1626-1637.
[83]
Hauser, B.; Deschner, T.; Boesch, C. Development of a liquid chromatography-tandem mass spectrometry method for the determination of 23 endogenous steroids in small quantities of primate urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 862(1-2), 100-112.
[84]
Naldi, A.C.; Fayad, P.B.; Prévost, M.; Sauvé, S. Analysis of steroid hormones and their conjugated forms in water and urine by on-line solid-phase extraction coupled to liquid chromatography tandem mass spectrometry. Chem. Cent. J., 2016, 10, 30.
[85]
Yan, Z.; Cheng, C.; Liu, S. In: LC-MS in Drug Bioanalysis; Xu, Q.A.; Madden, T.L., Eds.; Springer, US, 2012, pp. 251-286.
[86]
Santen, R.J.; Demers, L.; Ohorodnik, S.; Settlage, J.; Langecker, P.; Blanchett, D.; Gosse, P.E.; Wang, S. Superiority of gas chromatography/tandem mass spectrometry assay (GC/MS/MS)for estradiol for monitoring of aromatase inhibitor therapy. Steroids, 2007, 72, 666-671.
[87]
Cook, D.W.; Rutan, S.C. Chemometrics for the analysis of chromatographic data in metabolomics investigations. J. Chemometr., 2014, 9, 681-687.
[88]
Kotłowska, A. Application of chemometric techniques in search of clinically applicable biomarkers of disease. Drug Dev. Res., 2014, 75(5), 283-290.
[89]
Dessì, N.; Pascariello, E.; Pes, B. A comparative analysis of biomarker selection techniques. BioMed Res. Int., 2013, 2013, 387673.
[90]
Zarogianni, E.; Moorhead, T.W.; Lawrie, S.M. Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single-subject level. Neuroimage Clin., 2013, 3, 279-289.
[91]
Nagana Gowda, G.A.; Raftery, D. Biomarker Discovery and Translation in Metabolomics. Curr. Metabolomics, 2013, 1(3), 227-240.
[92]
Nagana Gowda, G.A.; Zhang, S.; Gu, H.; Asiago, V.; Shanaiah, N.; Raftery, D. Metabolomics-based methods for early disease diagnostics. Expert Rev. Mol. Diagn., 2008, 8(5), 617-633.
[93]
Tomasi, G.; van den Berg, F.; Andersson, C. Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. J. Chemometr., 2004, 18(5), 231-241.
[94]
Struck, W.; Wiczling, P.; Waszczuk-Jankowska, M.; Kaliszan, R.; Markuszewski, M.J. New supervised alignment method as a preprocessing tool for chromatographic data in metabolomic studies. J. Chromatogr. A, 2012, 1256, 150-159.
[95]
Ahn, J.K.; Kim, S.; Hwang, J.; Kim, J.; Lee, Y.S.; Koh, E.M.; Kim, K.H.; Cha, H.S. Metabolomic Elucidation of the Effects of Curcumin on Fibroblast-Like Synoviocytes in Rheumatoid Arthritis. PLoS One, 2015, 10(12), e0145539.
[96]
Cuperlović-Culf, M.; Belacel, N.; Culf, A.S.; Chute, I.C.; Ouellette, R.J.; Burton, I.W.; Karakach, T.K.; Walter, J.A. NMR metabolic analysis of samples using fuzzy K-means clustering. Magn. Reson. Chem., 2009, 47(l), S96-S104.
[97]
Yamamoto, H.; Yamaji, H.; Abe, Y.; Harada, K.; Waluyo, D.; Fukusaki, E.; Kondo, A.; Ohno, H.; Fukuda, H. Dimensionality reduction for metabolome data using PCA, PLS, OPLS, and RFDA with differential penalties to latent variables. Chemom. Intell. Lab. Syst., 2009, 98(2), 136-142.
[98]
Alonso, A.; Marsal, S.; Julià, A. Analytical Methods in Untargeted Metabolomics: State of the Art in 2015. Front. Bioeng. Biotechnol., 2015, 3, 3-20.
[99]
Worley, B.; Powers, R. Multivariate Analysis in Metabolomic. Curr. Metabolomics, 2013, 1(1), 92-107.
[100]
Jiang, J.H.; Wang, J.H.; Chu, X.; Yu, R.Q. Neural network learning to non-linear principal component analysis. Anal. Chim. Acta, 1996, 336, 209-222.
[101]
Rantalainen, M.; Bylesjö, M.; Cloarec, O.; Nicholson, J.K.; Holmes, E.; Trygg, J. Kernel-based orthogonal projections to latent structures (K-OPLS). J. Chemometr., 2007, 21, 376-38.
[102]
Rubingh, C.M.; Bijlsma, S.; Derks, E.P.; Bobeldijk, I.; Verheij, E.R.; Kochhar, S.; Smilde, A.K. Assessing the performance of statistical validation tools for megavariate metabolomics data. Metabolomics, 2006, 2(2), 53-61.
[103]
Bro, R.; Kjeldahl, K.; Smilde, A.K.; Kiers, H.A. Cross-validation of component models: a critical look at current methods. Anal. Bioanal. Chem., 2008, 390(5), 1241-1251.
[104]
Hajian-Tilaki, K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J. Intern. Med., 2013, 4(2), 627-635.
[105]
Vexler, A.; Chen, X.; Yu, J. Evaluations and comparisons of treatment effects based on best combinations of biomarkers with applications to biomedical studies. J. Comput. Biol., 2014, 21(9), 709-721.
[106]
Ma, Y.C.; Kim, H.Y. Determination of Steroids by Liquid Chromatography/Mass Spectrometry. J. Am. Soc. Mass Spectrom., 1997, 8(9), 1010-1020.
[107]
Rauh, M. Steroid measurement with LC-MS/MS. Application examples in pediatrics. J. Steroid Biochem. Mol. Biol., 2010, 121(3-5), 520-527.
[108]
Kalogera, E.; Pistos, C.; Provatopoulou, X.; Christophi, C.A.; Zografos, G.C.; Stefanidou, M.; Spiliopoulou, C.; Athanaselis, S.; Gounaris, A. Bioanalytical LC-MS Method for the Quantification of Plasma Androgens and Androgen Glucuronides in Breast Cancer. J. Chromatogr. Sci., 2016, 54(4), 583-592.
[109]
Konieczna, L.; Bączek, T.; Belka, M.; Fel, A.; Markuszewski, M.; Struck, W.; Markuszewski, M.; Kaliszan, R. Steroid profiles as potential biomarkers in patients with urogenital tract cancer for diagnostic investigations analyzed by liquid chromatography coupled to mass spectrometry. J. Pharm. Biomed. Anal., 2013, 73, 108-115.
[110]
Bicikova, M.; Hill, M.; Ripova, D.; Mohr, P.; Hampl, R. Determination of steroid metabolome as a possible tool for laboratory diagnosis of schizophrenia. J. Steroid Biochem. Mol. Biol., 2013, 133, 77-83.
[111]
Vaňková, M.; Hill, M.; Velíková, M.; Včelák, J.; Vacínová, G.; Dvořáková, K.; Lukášová, P.; Vejražková, D.; Rusina, R.; Holmerová, I.; Jarolímová, E.; Vaňková, H.; Kancheva, R.; Bendlová, B.; Stárka, L. Preliminary evidence of altered steroidogenesis in women with Alzheimer’s disease: Have the patients “OLDER” adrenal zona reticularis? J. Steroid Biochem. Mol. Biol., 2016, 158, 157-177.
[112]
Arlt, W.; Biehl, M.; Taylor, A.E.; Hahner, S.; Libé, R.; Hughes, B.A.; Schneider, P.; Smith, D.J.; Stiekema, H.; Krone, N.; Porfiri, E.; Opocher, G.; Bertherat, J.; Mantero, F.; Allolio, B.; Terzolo, M.; Nightingale, P.; Shackleton, C.H.L.; Bertagna, X.; Fassnacht, M.; Stewart, P.M. Urine steroid metabolomics as a biomarker tool for detecting malignancy in adrenal tumors. J. Clin. Endocrinol. Metab., 2011, 96(12), 3775-3784.
[113]
Kao, P.C.; Machacek, D.A.; Magera, M.J.; Lacey, J.M.; Rinaldo, P. Diagnosis of adrenal cortical dysfunction by liquid chromatography-tandem mass spectrometry. Ann. Clin. Lab. Sci., 2001, 31(2), 199-204.
[114]
Cheng, J.; Ma, X.; Krausz, K.W.; Idle, J.R.; Gonzalez, F.J. Rifampicin-activated human pregnane X receptor and CYP3A4 induction enhance acetaminophen-induced toxicity. Drug Metab. Dispos., 2009, 37(8), 1611-1621.
[115]
Kim, B.; Moon, J.Y.; Choi, M.H.; Yang, H.H.; Lee, S.; Lim, K.S.; Yoon, S.H.; Yu, K.S.; Jang, I.J.; Cho, J.Y. Global metabolomics and targeted steroid profiling reveal that rifampin, a strong human PXR activator, alters endogenous urinary steroid markers. J. Proteome Res., 2013, 12(3), 1359-1368.
[116]
McManus, F.; Fraser, R.; Davies, E.; Connell, J.M.; Freel, E.M. Plasma steroid profiling and response to trophins to illustrate intra-adrenal dynamics. J. Endocrinol., 2015, 224(2), 149-157.
[117]
Badoud, F.; Boccard, J.; Schweizer, C.; Pralong, F.; Saugy, M.; Baume, N. Profiling of steroid metabolites after transdermal and oral administration of testosterone by ultra-high pressure liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. J. Steroid Biochem. Mol. Biol., 2013, 138, 222-235.
[118]
Norli, H.R.; Esbensen, K.; Westad, F.; Birkeland, K.I.; Hemmersbach, P. Chemometric evaluation of urinary steroid profiles in doping control. J. Steroid Biochem. Mol. Biol., 1995, 54(1-2), 83-88.
[119]
Medina, S.; Ferreres, F.; García-Viguera, C.; Horcajada, M.N.; Orduna, J.; Savirón, M.; Zurek, G.; Martínez-Sanz, J.M.; Gil, J.I.; Gil-Izquierdo, A. Non-targeted metabolomic approach reveals urinary metabolites linked to steroid biosynthesis pathway after ingestion of citrus juice. Food Chem., 2013, 136(2), 938-946.
[120]
Keefe, C.C.; Goldman, M.M.; Zhang, K.; Clarke, N.; Reitz, R.E.; Welt, C.K. Simultaneous measurement of thirteen steroid hormones in women with polycystic ovary syndrome and control women using liquid chromatography-tandem mass spectrometry. PLoS One, 2014, 9(4), e93805.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy