[1]
Kalisky, T.; Quake, S.R. Single-cell genomics. Nat. Methods, 2011, 8, 311-314.
[2]
Rubanyi, G.M. The future of human gene therapy. Mol. Aspects Med., 2001, 22, 113-142.
[3]
Prazeres, D.M.; Monteiro, G.A.; Ferreira, G.N.; Diogo, M.M.; Ribeiro, S.C.; Cabral, J.M. Purification of plasmids for gene therapy and DNA vaccination. Biotechnol. Annu. Rev., 2001, 7, 1-30.
[4]
Ferreira, G.N.; Monteiro, G.A.; Prazeres, D.M.; Cabral, J.M. Downstream processing of plasmid DNA for gene therapy and DNA vaccine applications. Trends Biotechnol., 2000, 18, 380-388.
[5]
Sousa, F.; Queiroz, J.A. Supercoiled plasmid quality assessment by analytical arginine-affinity chromatography. J. Chromatogr. A, 2011, 1218, 124-129.
[6]
Smith, C.R.; DePrince, R.B.; Dackor, J.; Weigl, D.; Griffith, J.; Persmark, M. Separation of topological forms of plasmid DNA by anion-exchange HPLC: shifts in elution order of linear DNA. J. Chromatogr. B ., 2007, 854, 121-127.
[7]
Hitchcock, A.G.; Sergeant, J.A.; Rahman, S.F.; Tharia, H.A.; Blom, H. Scale-up of a plasmid DNA purification process. Bioprocess Int., 2010, 8, 46-54.
[8]
Ferreira, G.N.M.; Cabral, J.M.S.; Prazeres, D.M.F. A comparison of gel filtration chromatographic supports for plasmid purification. Biotechnol. Tech., 1997, 11, 417-420.
[9]
Prazeres, D.M.; Schluep, T.; Cooney, C. Preparative purification of supercoiled plasmid DNA using anion-exchange chromatography. J. Chromatogr. A, 1998, 806, 31-45.
[10]
Eon-Duval, A.; Burke, G. Purification of pharmaceutical-grade plasmid DNA by anion-exchange chromatography in an RNase-free process. J. Chromatogr. B., 2004, 804, 327-335.
[11]
Diogo, M.M.; Queiroz, J.A.; Monteiro, G.A.; Martins, S.A.; Ferreira, G.N.; Prazeres, D.M. Purification of a cystic fibrosis plasmid vector for gene therapy using hydrophobic interaction chromatography. Biotechnol. Bioeng., 2000, 68, 576-583.
[12]
Caramelo-Nunes, C.; Tente, T.; Almeida, P.; Marcos, J.C.; Tomaz, C.T. Specific berenil-DNA interactions: an approach for separation of plasmid isoforms by pseudo-affinity chromatography. Anal. Biochem., 2011, 412, 153-158.
[13]
Sousa, A.; Sousa, F.; Queiroz, J.A. Differential interactions of plasmid DNA, RNA and genomic DNA with amino acid-based affinity matrices. J. Sep. Sci., 2010, 33, 2610-2618.
[14]
Sousa, F.; Prazeres, D.M.; Queiroz, J.A. Improvement of transfection efficiency by using supercoiled plasmid DNA purified with arginine affinity chromatography. J. Gene Med., 2009, 11, 79-88.
[15]
Zhong, L.; Scharer, J.; Moo-Young, M.; Fenner, D.; Crossley, L.; Honeyman, C.H.; Suen, S.Y.; Chou, C.P. Potential application of hydrogel-based strong anion-exchange membrane for plasmid DNA purification. J. Chromatogr. B., 2011, 879, 564-572.
[16]
Guerrero-German, P.; Prazeres, D.M.; Guzman, R.; Montesinos-Cisneros, R.M.; Tejeda-Mansir, A. Purification of plasmid DNA using tangential flow filtration and tandem anion-exchange membrane chromatography. Bioprocess Biosyst. Eng., 2009, 32, 615-623.
[17]
Johansson, H.O.; Matos, T.; Luz, J.S.; Feitosa, E.; Oliveira, C.C.; Pessoa, A. Jr, Bülow, L.; Tjerneld, F. Plasmid DNA partitioning and separation using poly(ethylene glycol)/poly(acrylate)/salt aqueous two-phase systems. J. Chromatogr. A, 2012, 1233, 30-35.
[18]
Ferreira, G.N.; Cabral, J.M.; Prazeres, D.M. Studies on the batch adsorption of plasmid DNA onto anion-exchange chromatographic supports. Biotechnol. Prog., 2000, 16, 416-424.
[19]
Levy, M.S.; O’Kennedy, R.D.; Ayazi-Shamlou, P.; Dunnill, P. Biochemical engineering approaches to the challenges of producing pure plasmid DNA. Trends Biotechnol., 2000, 18, 296-305.
[20]
Benčina, M.; Podgornik, A.; Štrancar, A. Characterization of methacrylate monoliths for purification of DNA molecules. J. Sep. Sci., 2004, 27, 801-810.
[21]
Nordborg, A.; Hilder, E.F. Recent advances in polymer monoliths for ion-exchange chromatography. Anal. Bioanal. Chem., 2009, 394, 71-84.
[22]
Sousa, A.; Bicho, D.; Tomaz, C.T.; Sousa, F.; Queiroz, J.A. Performance of a non-grafted monolithic support for purification of supercoiled plasmid DNA. J. Chromatogr. A, 2011, 1218, 1701-1706.
[23]
Shin, M.J.; Tan, L.; Jeong, M.H.; Kim, J-H.; Choe, W-S. Monolith-based immobilized metal affinity chromatography increases production efficiency for plasmid DNA purification. J. Chromatogr. A, 2011, 1218, 5273-5278.
[24]
Smrekar, V.; Smrekar, F.; Strancar, A.; Podgornik, A. Single step plasmid DNA purification using methacrylate monolith bearing combination of ion-exchange and hydrophobic groups. J. Chromatogr. A, 2013, 1276, 58-64.
[25]
Černigoj, U.; Barut, M.; Podgornik, A.; Peterka, M.; Strancar, A. A multimodal histamine ligand for chromatographic purification of plasmid DNA. J. Chromatogr. A, 2013, 1281, 87-93.
[26]
Paril, C.; Horner, D.; Ganja, R.; Jungbauer, A. Adsorption of pDNA on microparticulate charged surface. J. Biotechnol., 2009, 141, 47-57.
[27]
Tiainen, P.; Galaev, I.; Larsson, P.O. Plasmid adsorption to anion-exchange matrices: comments on plasmid recovery. Biotechnol. J., 2007, 2, 726-735.
[28]
Tiainen, P.; Gustavsson, P-E.; Ljunglöf, A.; Larsson, P-O. Superporous agarose anion exchangers for plasmid isolation. J. Chromatogr. A, 2007, 1138, 84-94.
[29]
Tiainen, P.; Rokebul Anower, M.; Larsson, P.O. High-capacity composite adsorbents for nucleic acids. J. Chromatogr. A, 2011, 1218, 5235-5240.
[30]
Teeters, M.; Root, T.; Lightfoot, E. Adsorption and desorption behavior of plasmid DNA on ion-exchange membranes: effect of salt valence and compaction agents. J. Chromatogr. A, 2004, 1036, 73-78.
[31]
Huber, C.G. Micropellicular stationary phases for high-performance liquid chromatography of double-stranded DNA. J. Chromatogr. A, 1998, 806, 3-30.
[32]
Murphy, J.C.; Wibbenmeyer, J.A.; Fox, G.E.; Willson, R.C. Purification of plasmid DNA using selective precipitation by compaction agents. Nature, 1999, 17, 10-11.
[33]
Matos, T.; Queiroz, J.A.; Bülow, L. Plasmid DNA purification using a multimodal chromatography resin. J. Mol. Recognit., 2014, 27, 184-189.
[34]
Matos, T.; Queiroz, J.A.; Bülow, L. Binding and elution behavior of small deoxyribonucleic acid fragments on a strong anion-exchanger multimodal chromatography resin. J. Chromatogr. A, 2013, 1302, 40-44.
[35]
Ferreira, G.N.; Cabral, J.M.; Prazeres, D.M. Development of process flow sheets for the purification of supercoiled plasmids for gene therapy applications. Biotechnol. Prog., 1999, 15, 725-731.
[36]
Urthaler, J.; Schlegl, R.; Podgornik, A.; Strancar, A.; Jungbauer, A.; Necina, R. Application of monoliths for plasmid DNA purification. J. Chromatogr. A, 2005, 1065, 93-106.
[37]
Theodossiou, I.; Søndergaard, M.; Thomas, O.R. Design of expanded bed supports for the recovery of plasmid DNA by anion exchange adsorption. Bioseparation, 2001, 10, 31-44.
[38]
Westman, E.; Eriksson, S.; Laas, T.; Pernemalm, P.A.; Skold, S.E. Separation of DNA restriction fragments by ion-exchange chromatography on FPLC columns Mono P and Mono Q. Anal. Biochem., 1987, 166, 158-171.
[39]
Chen, W.H.; Fu, J.Y.; Kourentzi, K.; Willson, R.C. Nucleic acid affinity of clustered-charge anion exchange adsorbents: effects of ionic strength and ligand density. J. Chromatogr. A, 2011, 1218, 258-262.
[40]
Yamamoto, S.; Nakamura, M.; Tarmann, C.; Jungbauer, A. Retention studies of DNA on anion-exchange monolith chromatography binding site and elution behavior. J. Chromatogr. A, 2007, 1144, 155-160.
[41]
Yamamoto, S.; Yoshimoto, N.; Tarmann, C.; Jungbauer, A. Binding site and elution behavior of DNA and other large biomolecules in monolithic anion-exchange chromatography. J. Chromatogr. A, 2009, 1216, 2616-2620.
[42]
Arakawa, T.; Timasheff, S.N. Preferential interactions of proteins with salts in concentrated solutions. Biochemistry, 1982, 21, 6545-6552.
[43]
Melander, W.R.; Elrassi, Z.; Horváth, C. Interplay of hydrophobic and electrostatic interactions in biopolymer chromatography. J. Chromatogr. , 1989, 469, 3-27.
[44]
Melander, W.R.; Corradini, D.; Horváth, C. Salt-mediated retention of proteins in hydrophobic-interaction chromatography. J. Chromatogr. , 1984, 317, 67-85.
[45]
Melander, W.; Horváth, C. Chromatography on hydrophobic interactions of proteins : an interpretation in precipitation and of the lyotropic series. Arch. Biochem. Biophys., 1977, 183, 200-215.
[46]
Porath, J.; Sundberg, L.; Fornstedt, N.; Olsson, I. Salting-out in amphiphilic gels as a new approach to hydrophobic adsorption. Nature, 1973, 245, 465-466.
[47]
Porath, J. Salt-promoted adsorption: recent developments. J. Chromatogr. A, 1986, 376, 331-341.
[48]
Haimer, E.; Tscheliessnig, A.; Hahn, R.; Jungbauer, A. Hydrophobic interaction chromatography of proteins IV. Kinetics of protein spreading. J. Chromatogr. A, 2007, 1139, 84-94.
[49]
Diogo, M.M.; Queiroz, J.A.; Prazeres, D.M.F. Assessment of purity and quantification of plasmid DNA in process solutions using high-performance hydrophobic interaction chromatography. J. Chromatogr. A, 2003, 998, 109-117.
[50]
Stadler, J.; Lemmens, R.; Nyhammar, T. Plasmid DNA purification. J. Gene Med., 2004, 6, 54-66.
[51]
Diogo, M.M.; Queiroz, J.A.; Prazeres, D.M. Studies on the retention of plasmid DNA and Escherichia coli nucleic acids by hydrophobic interaction chromatography. Bioseparation, 2001, 10, 211-220.
[52]
Iuliano, S.; Fisher, J.R.; Chen, M.; Kelly, W.J. Rapid analysis of a plasmid by hydrophobic-interaction chromatography with a non-porous resin. J. Chromatogr. A, 2002, 972, 77-86.
[53]
Kallberg, K.; Johansson, H.O.; Bulow, L. Multimodal chromatography: an efficient tool in downstream processing of proteins. Biotechnol. J., 2012, 7, 1485-1495.
[54]
Yang, Y.; Geng, X. Mixed-mode chromatography and its applications to biopolymers. J. Chromatogr. A, 2011, 1218, 8813-8825.
[55]
Kopaciewicz, W.; Rounds, M.A.; Regnier, F.E. Stationary phase contributions to retention in high-performance anion-exchange protein chromatography: ligand density and mixed mode effects. J. Chromatogr. A, 1985, 318, 157-172.
[56]
Mclaughlin, L.W. Mixed-mode chromatography of nucleic acids. Chem. Rev., 1989, 89, 309-319.
[57]
Trammell, B.C.; Hillmyer, M.A.; Carr, P.W. A study of the Lewis Acid-Base interactions of Polybutadiene-Coated Zirconia. Anal. Chem., 2001, 73, 3323-3331.
[58]
Xindu, G.; Lili, W. Liquid chromatography of recombinant proteins and protein drugs. J. Chromatogr. B., 2008, 866, 133-153.
[59]
Burton, S.C.; Harding, D.R. Salt-independent adsorption chromatography: new broad-spectrum affinity methods for protein capture. J. Biochem. Biophys. Methods, 2001, 49, 275-287.
[60]
Cabanne, C. Efficient purification of recombinant proteins fused to maltose-binding protein by mixed-mode chromatography. J. Chromatogr. A, 2009, 1216, 4451-4456.
[61]
Kallberg, K.; Becker, K.; Bülow, L. Application of a pH responsive multimodal hydrophobic interaction chromatography medium for the analysis of glycosylated proteins. J. Chromatogr. A, 2011, 1218, 678-683.
[62]
Davies, N.H.; Euerby, M.R.; McCalley, D.V. A study of retention and overloading of basic compounds with mixed-mode reversed-phase/cation-exchange columns in high performance liquid chromatography. Biotechnol. Appl. Biochem., 2007, 1138, 65-72.
[63]
Zhao, G.; Dong, X.Y.; Sun, Y. Ligands for mixed-mode protein chromatography: Principles, characteristics and design. J. Biotechnol., 2009, 144, 3-11.
[64]
Johansson, B.L.; Belew, M.; Eriksson, S.; Glad, G.; Lind, O.; Maloisel, J.L.; Norrman, N. Preparation and characterization of prototypes for multi-modal separation media aimed for capture of negatively charged biomolecules at high salt conditions. J. Chromatogr. A, 2003, 1016, 21-33.
[65]
Eriksson, K.; Rodrigo, G.; Brekkan, E. MAb contaminant removal with a multimodal anion exchanger. Bioprocess Int., 2009, 7, 52-56.
[66]
Chen, J.; Tetrault, J.; Zhang, Y.; Wasserman, A.; Conley, G.; Dileo, M.; Haimes, E.; Nixon, A.E.; Ley, A. The distinctive separation attributes of mixed-mode resins and their application in monoclonal antibody downstream purification process. J. Chromatogr. A, 2010, 1217, 216-224.
[67]
Gagnon, P. IgG aggregate removal by charged-hydrophobic mixed mode chromatography. Curr. Pharm. Biotechnol., 2009, 10, 434-439.
[68]
Silva-Santos, A.R.; Alves, C.P.A.; Prazeres, D.M.F.; Azevedo, A.M. Separation of plasmid DNA topoisomers by multimodal chromatography. Anal. Biochem., 2016, 503, 68-70.
[69]
Liang, X.G.; Kuhn, H.; Frank-Kamenetskii, M.D. Monitoring single-stranded DNA secondary structure formation by determining the topological state of DNA catenanes. Biophys. J., 2006, 90, 2877-2889.
[70]
Langowski, J. Salt effects on internal motion of super helical and linear pUC8 DNA. Biophys. Chem., 1987, 27, 263-271.
[71]
Cardenas, M.; Schillén, K.; Pebalk, D.; Nylander, T.; Lindman, B. Interaction between DNA and charged colloids could be hydrophobically driven. Biomacromolecules, 2005, 6, 832-837.
[72]
Diogo, M.M.; Queiroz, J.A.; Prazeres, D.M.F. Studies on the retention of plasmid DNA and Escherichia coli nucleic acids by hydrophobic interaction chromatography. Bioseparation, 2001, 10, 211-220.
[73]
Matos, T.; Mohamed, E.T.; Queiroz, J.A.; Bülow, L. CaptoTM Resins for DNA purification: A minor difference in ligand composition greatly influences the separation of guanidyl containing fragments. Chromatographia, 2016, 79, 1277-1282.
[74]
Matos, T.; Silva, G.; Queiroz, J.A.; Bülow, L. Preparative isolation of polymerase chain reaction products using mixed-mode chromatography. Anal. Biochem., 2015, 489, 73-75.
[75]
Matos, T.; Johansson, H.O.; Queiroz, J.A.; Bülow, L. Isolation of PCR DNA fragments using aqueous two-phase systems. Sep. Purif. Technol., 2014, 122, 144-148.