Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Privileged Structures in the Design of Potential Drug Candidates for Neglected Diseases

Author(s): Ana Cristina Lima Leite*, José Wanderlan Pontes Espíndola, Marcos Veríssimo de Oliveira Cardoso and Gevanio Bezerra de Oliveira Filho

Volume 26, Issue 23, 2019

Page: [4323 - 4354] Pages: 32

DOI: 10.2174/0929867324666171023163752

Price: $65

Abstract

Background: Privileged motifs are recurring in a wide range of biologically active compounds that reach different pharmaceutical targets and pathways and could represent a suitable start point to access potential candidates in the neglected diseases field. The current therapies to treat these diseases are based in drugs that lack of the desired effectiveness, affordable methods of synthesis and allow a way to emergence of resistant strains. Due the lack of financial return, only few pharmaceutical companies have been investing in research for new therapeutics for neglected diseases (ND).

Methods: Based on the literature search from 2002 to 2016, we discuss how six privileged motifs, focusing phthalimide, isatin, indole, thiosemicarbazone, thiazole, and thiazolidinone are particularly recurrent in compounds active against some of neglected diseases.

Results: It was observed that attention was paid particularly for Chagas disease, malaria, tuberculosis, schistosomiasis, leishmaniasis, dengue, African sleeping sickness (Human African Trypanosomiasis - HAT) and toxoplasmosis. It was possible to verify that, among the ND, antitrypanosomal and antiplasmodial activities were between the most searched. Besides, thiosemicarbazone moiety seems to be the most versatile and frequently explored scaffold. As well, phthalimide, isatin, thiazole, and thiazolidone nucleus have been also explored in the ND field.

Conclusion: Some described compounds, appear to be promising drug candidates, while others could represent a valuable inspiration in the research for new lead compounds.

Keywords: Privileged structures, phthalimide, isatine, indole, thiosemicarbazone, thiazole, thiazolidinone antiprotozoal chemotherapy, leishmania, plasmodium, trypanosoma, antiparasitic drugs.

[1]
Bongarzone, S.; Bolognesi, M.L. The concept of privileged structures in rational drug design: focus on acridine and quinoline scaffolds in neurodegenerative and protozoan diseases. Expert Opin. Drug Discov., 2011, 6(3), 251-268.
[http://dx.doi.org/10.1517/17460441.2011.550914] [PMID: 22647203]
[2]
Evans, B.E.; Rittle, K.E.; Bock, M.G.; DiPardo, R.M.; Freidinger, R.M.; Whitter, W.L.; Lundell, G.F.; Veber, D.F.; Anderson, P.S.; Chang, R.S. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem., 1988, 31(12), 2235-2246.
[http://dx.doi.org/10.1021/jm00120a002] [PMID: 2848124]
[3]
Horton, D.A.; Bourne, G.T.; Smythe, M.L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev., 2003, 103(3), 893-930.
[http://dx.doi.org/10.1021/cr020033s] [PMID: 12630855]
[4]
Costantino, L.; Barlocco, D. Privileged structures as leads in medicinal chemistry. Curr. Med. Chem., 2006, 13(1), 65-85.
[http://dx.doi.org/10.2174/092986706775197999] [PMID: 16457640]
[5]
DeSimone, R.W.; Currie, K.S.; Mitchell, S.A.; Darrow, J.W.; Pippin, D.A. Privileged structures: applications in drug discovery. Comb. Chem. High Throughput Screen., 2004, 7(5), 473-494.
[http://dx.doi.org/10.2174/1386207043328544] [PMID: 15320713]
[6]
Polanski, J.; Kurczyk, A.; Bak, A.; Musiol, R. Privileged structures - dream or reality: preferential organization of azanaphthalene scaffold. Curr. Med. Chem., 2012, 19(13), 1921-1945.
[http://dx.doi.org/10.2174/092986712800167356] [PMID: 22376032]
[7]
Goldberg, F.W.; Kettle, J.G.; Kogej, T.; Perry, M.W.; Tomkinson, N.P. Designing novel building blocks is an overlooked strategy to improve compound quality. Drug Discov. Today, 2015, 20(1), 11-17.
[http://dx.doi.org/10.1016/j.drudis.2014.09.023] [PMID: 25281855]
[8]
Chen, H.; Zhou, X.; Wang, A.; Zheng, Y.; Gao, Y.; Zhou, J. Evolutions in fragment-based drug design: the deconstruction-reconstruction approach. Drug Discov. Today, 2015, 20(1), 105-113.
[http://dx.doi.org/10.1016/j.drudis.2014.09.015] [PMID: 25263697]
[9]
Jhoti, H.; Williams, G.; Rees, D.C.; Murray, C.W. The ‘rule of three’ for fragment-based drug discovery: where are we now? Nat. Rev. Drug Discov., 2013, 12(8), 644-645.
[http://dx.doi.org/10.1038/nrd3926-c1] [PMID: 23845999]
[10]
Congreve, M.; Carr, R.; Murray, C.; Jhoti, H.A. ‘rule of three’ for fragment-based lead discovery? Drug Discov. Today, 2003, 8(19), 876-877.
[http://dx.doi.org/10.1016/S1359-6446(03)02831-9] [PMID: 14554012]
[11]
Guzior, N.; Wieckowska, A.; Panek, D.; Malawska, B. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr. Med. Chem., 2015, 22(3), 373-404.
[http://dx.doi.org/10.2174/0929867321666141106122628] [PMID: 25386820]
[12]
Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem., 2005, 48(21), 6523-6543.
[http://dx.doi.org/10.1021/jm058225d] [PMID: 16220969]
[13]
Morphy, R.; Rankovic, Z. Designing multiple ligands - medicinal chemistry strategies and challenges. Curr. Pharm. Des., 2009, 15(6), 587-600.
[http://dx.doi.org/10.2174/138161209787315594] [PMID: 19199984]
[14]
Espinoza-Fonseca, L.M. The benefits of the multi-target approach in drug design and discovery. Bioorg. Med. Chem., 2006, 14(4), 896-897.
[http://dx.doi.org/10.1016/j.bmc.2005.09.011] [PMID: 16203151]
[15]
Müller-Schiffmann, A.; Sticht, H.; Korth, C. Hybrid compounds: from simple combinations to nanomachines. BioDrugs, 2012, 26(1), 21-31.
[http://dx.doi.org/10.2165/11597630-000000000-00000] [PMID: 22239618]
[16]
Alanazi, A.M.; El-Azab, A.S.; Al-Suwaidan, I.A.; ElTahir, K.E.; Asiri, Y.A.; Abdel-Aziz, N.I.; Abdel-Aziz, A.A. Structure-based design of phthalimide derivatives as potential cyclooxygenase-2 (COX-2) inhibitors: anti-inflammatory and analgesic activities. Eur. J. Med. Chem., 2015, 92, 115-123.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.039] [PMID: 25549551]
[17]
Kamiński, K.; Obniska, J.; Wiklik, B.; Atamanyuk, D. Synthesis and anticonvulsant properties of new acetamide derivatives of phthalimide, and its saturated cyclohexane and norbornene analogs. Eur. J. Med. Chem., 2011, 46(9), 4634-4641.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.043] [PMID: 21840629]
[18]
Akgün, H.; Karamelekoğlu, I.; Berk, B.; Kurnaz, I.; Sarıbıyık, G.; Öktem, S.; Kocagöz, T. Synthesis and antimycobacterial activity of some phthalimide derivatives. Bioorg. Med. Chem., 2012, 20(13), 4149-4154.
[http://dx.doi.org/10.1016/j.bmc.2012.04.060] [PMID: 22633120]
[19]
Abdel-Aziz, A.A.; El-Azab, A.S.; Attia, S.M.; Al-Obaid, A.M.; Al-Omar, M.A.; El-Subbagh, H.I. Synthesis and biological evaluation of some novel cyclic-imides as hypoglycaemic, anti-hyperlipidemic agents. Eur. J. Med. Chem., 2011, 46(9), 4324-4329.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.002] [PMID: 21783284]
[20]
Leite, A.C.L.; Barbosa, F.F. Phthaloyl amino acids as anti-inflammatory and immunomodulatory prototypes. Med. Chem. Res., 2014, 23, 1701-1708.
[http://dx.doi.org/10.1007/s00044-013-0730-1]
[21]
Singh, G.; Saroa, A.; Girdhar, S.; Rani, S.; Sahoo, S.; Choquesillo-Lazarte, D. Synthesis, characterization, electronic absorption and antimicrobial studies of N-(silatranylpropyl)phthalimide derived from phthalic anhydride. Inorg. Chim. Acta, 2015, 427, 232-239.
[http://dx.doi.org/10.1016/j.ica.2015.01.011]
[22]
Elumalai, K.; Ali, M.A.; Elumalai, M.; Eluri, K.; Srinivasan, S.; Sivannan, S. Synthesis, characterization and biological evaluation of acetazolamide, cycloserine and isoniazid condensed some novel phthalimide derivatives. Int. J. Chem. Anal. Sci., 2013, 4, 57-61.
[http://dx.doi.org/10.1016/j.ijcas.2013.04.004]
[23]
Williams, R.; Manka, J.T.; Rodriguez, A.L.; Vinson, P.N.; Niswender, C.M.; Weaver, C.D.; Jones, C.K.; Conn, P.J.; Lindsley, C.W.; Stauffer, S.R. Synthesis and SAR of centrally active mGlu5 positive allosteric modulators based on an aryl acetylenic bicyclic lactam scaffold. Bioorg. Med. Chem. Lett., 2011, 21(5), 1350-1353.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.044] [PMID: 21315585]
[24]
Cardoso, M.V.; Moreira, D.R.; Oliveira Filho, G.B.; Cavalcanti, S.M.; Coelho, L.C.; Espíndola, J.W.; Gonzalez, L.R.; Rabello, M.M.; Hernandes, M.Z.; Ferreira, P.M.; Pessoa, C.; Alberto de Simone, C.; Guimarães, E.T.; Soares, M.B.; Leite, A.C. Design, synthesis and structure-activity relationship of phthalimides endowed with dual antiproliferative and immunomodulatory activities. Eur. J. Med. Chem., 2015, 96, 491-503.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.041] [PMID: 25942060]
[25]
Coêlho, L.C.D. Novel phthalimide derivatives with TNF-α and IL-1β expression inhibitory and apoptotic inducing properties. MedChemComm, 2014, 5, 758.
[http://dx.doi.org/10.1039/C4MD00070F]
[26]
da Costa, P.M.; da Costa, M.P.; Carvalho, A.A.; Cavalcanti, S.M.; de Oliveira Cardoso, M.V.; de Oliveira Filho, G.B.; de Araújo Viana, D.; Fechine-Jamacaru, F.V.; Leite, A.C.; de Moraes, M.O.; Pessoa, C.; Ferreira, P.M. Improvement of in vivo anticancer and antiangiogenic potential of thalidomide derivatives. Chem. Biol. Interact., 2015, 239, 174-183.
[http://dx.doi.org/10.1016/j.cbi.2015.06.037] [PMID: 26134001]
[27]
Bal, T.R.; Anand, B.; Yogeeswari, P.; Sriram, D. Synthesis and evaluation of anti-HIV activity of isatin β-thiosemicarbazone derivatives. Bioorg. Med. Chem. Lett., 2005, 15(20), 4451-4455.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.046] [PMID: 16115762]
[28]
Jiang, T.; Kuhen, K.L.; Wolff, K.; Yin, H.; Bieza, K.; Caldwell, J.; Bursulaya, B.; Tuntland, T.; Zhang, K.; Karanewsky, D.; He, Y. Design, synthesis, and biological evaluations of novel oxindoles as HIV-1 non-nucleoside reverse transcriptase inhibitors. Part 2. Bioorg. Med. Chem. Lett., 2006, 16(8), 2109-2112.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.066] [PMID: 16464578]
[29]
Tripathy, R.; Reiboldt, A.; Messina, P.A.; Iqbal, M.; Singh, J.; Bacon, E.R.; Angeles, T.S.; Yang, S.X.; Albom, M.S.; Robinson, C.; Chang, H.; Ruggeri, B.A.; Mallamo, J.P. Structure-guided identification of novel VEGFR-2 kinase inhibitors via solution phase parallel synthesis. Bioorg. Med. Chem. Lett., 2006, 16(8), 2158-2162.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.063] [PMID: 16460933]
[30]
Cane, A.; Tournaire, M-C.; Barritault, D.; Crumeyrolle-Arias, M. The endogenous oxindoles 5-hydroxyoxindole and isatin are antiproliferative and proapoptotic. Biochem. Biophys. Res. Commun., 2000, 276(1), 379-384.
[http://dx.doi.org/10.1006/bbrc.2000.3477] [PMID: 11006132]
[31]
da Silveira, V.C.; Luz, J.S.; Oliveira, C.C.; Graziani, I.; Ciriolo, M.R.; da Costa Ferreira, A.M. Double-strand DNA cleavage induced by oxindole-Schiff base copper(II) complexes with potential antitumor activity. J. Inorg. Biochem., 2008, 102(5-6), 1090-1103.
[http://dx.doi.org/10.1016/j.jinorgbio.2007.12.033] [PMID: 18295339]
[32]
Rodríguez-Argüelles, M.C.; Mosquera-Vázquez, S.; Tourón-Touceda, P.; Sanmartín-Matalobos, J.; García-Deibe, A.M.; Belicchi-Ferrari, M.; Pelosi, G.; Pelizzi, C.; Zani, F. Complexes of 2-thiophenecarbonyl and isonicotinoyl hydrazones of 3-(N-methyl)isatin. A study of their antimicrobial activity. J. Inorg. Biochem., 2007, 101(1), 138-147.
[http://dx.doi.org/10.1016/j.jinorgbio.2006.09.004] [PMID: 17070919]
[33]
Raj, A.A.; Raghunathan, R. SrideviKumari, M.R.; Raman, N. Synthesis, antimicrobial and antifungal activity of a new class of spiro pyrrolidines. Bioorg. Med. Chem., 2003, 11(3), 407-419.
[http://dx.doi.org/10.1016/S0968-0896(02)00439-X] [PMID: 12517436]
[34]
Maskell, L.; Blanche, E.A.; Colucci, M.A.; Whatmore, J.L.; Moody, C.J. Synthesis and evaluation of prodrugs for anti-angiogenic pyrrolylmethylidenyl oxindoles. Bioorg. Med. Chem. Lett., 2007, 17(6), 1575-1578.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.108] [PMID: 17254788]
[35]
Verma, M.; Pandeya, S.N.; Singh, K.N.; Stables, J.P. Anticonvulsant activity of Schiff bases of isatin derivatives. Acta Pharm., 2004, 54(1), 49-56.
[PMID: 15050044]
[36]
Igosheva, N.; Lorz, C.; O’Conner, E.; Glover, V.; Mehmet, H. Isatin, an endogenous monoamine oxidase inhibitor, triggers a dose- and time-dependent switch from apoptosis to necrosis in human neuroblastoma cells. Neurochem. Int., 2005, 47(3), 216-224.
[http://dx.doi.org/10.1016/j.neuint.2005.02.011] [PMID: 15876476]
[37]
Fensome, A.; Adams, W.R.; Adams, A.L.; Berrodin, T.J.; Cohen, J.; Huselton, C.; Illenberger, A.; Kern, J.C.; Hudak, V.A.; Marella, M.A.; Melenski, E.G.; McComas, C.C.; Mugford, C.A.; Slayden, O.D.; Yudt, M.; Zhang, Z.; Zhang, P.; Zhu, Y.; Winneker, R.C.; Wrobel, J.E. Design, synthesis, and SAR of new pyrrole-oxindole progesterone receptor modulators leading to 5-(7-fluoro-3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-5-yl)-1-methyl-1H-pyrrole-2-carbonitrile (WAY-255348). J. Med. Chem., 2008, 51(6), 1861-1873.
[http://dx.doi.org/10.1021/jm701080t] [PMID: 18318463]
[38]
Kumari, G.; Nutan, M.; Modi, M.; Gupta, S.K.; Singh, R.K. Rhodium(II) acetate-catalyzed stereoselective synthesis, SAR and anti-HIV activity of novel oxindoles bearing cyclopropane ring. Eur. J. Med. Chem., 2011, 46(4), 1181-1188.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.037] [PMID: 21339030]
[39]
Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qiu, S.; Ding, Y.; Gao, W.; Stuckey, J.; Krajewski, K.; Roller, P.P.; Tomita, Y.; Parrish, D.A.; Deschamps, J.R.; Wang, S. Structure-based design of potent non-peptide MDM2 inhibitors. J. Am. Chem. Soc., 2005, 127(29), 10130-10131.
[http://dx.doi.org/10.1021/ja051147z] [PMID: 16028899]
[40]
Lo, M.M.; Neumann, C.S.; Nagayama, S.; Perlstein, E.O.; Schreiber, S.L. A library of spirooxindoles based on a stereoselective three-component coupling reaction. J. Am. Chem. Soc., 2004, 126(49), 16077-16086.
[http://dx.doi.org/10.1021/ja045089d] [PMID: 15584743]
[41]
Vintonyak, V.V.; Warburg, K.; Kruse, H.; Grimme, S.; Hübel, K.; Rauh, D.; Waldmann, H. Identification of thiazolidinones spiro-fused to indolin-2-ones as potent and selective inhibitors of the Mycobacterium tuberculosis protein tyrosine phosphatase B. Angew. Chem. Int. Ed. Engl., 2010, 49(34), 5902-5905.
[http://dx.doi.org/10.1002/anie.201002138] [PMID: 20632348]
[42]
Yeung, B.K.; Zou, B.; Rottmann, M.; Lakshminarayana, S.B.; Ang, S.H.; Leong, S.Y.; Tan, J.; Wong, J.; Keller-Maerki, S.; Fischli, C.; Goh, A.; Schmitt, E.K.; Krastel, P.; Francotte, E.; Kuhen, K.; Plouffe, D.; Henson, K.; Wagner, T.; Winzeler, E.A.; Petersen, F.; Brun, R.; Dartois, V.; Diagana, T.T.; Keller, T.H. Spirotetrahydro beta-carbolines (spiroindolones): a new class of potent and orally efficacious compounds for the treatment of malaria. J. Med. Chem., 2010, 53(14), 5155-5164.
[http://dx.doi.org/10.1021/jm100410f] [PMID: 20568778]
[43]
Rottmann, M.; McNamara, C.; Yeung, B.K.; Lee, M.C.; Zou, B.; Russell, B.; Seitz, P.; Plouffe, D.M.; Dharia, N.V.; Tan, J.; Cohen, S.B.; Spencer, K.R.; González-Páez, G.E.; Lakshminarayana, S.B.; Goh, A.; Suwanarusk, R.; Jegla, T.; Schmitt, E.K.; Beck, H.P.; Brun, R.; Nosten, F.; Renia, L.; Dartois, V.; Keller, T.H.; Fidock, D.A.; Winzeler, E.A.; Diagana, T.T. Spiroindolones, a potent compound class for the treatment of malaria. Science, 2010, 329(5996), 1175-1180.
[http://dx.doi.org/10.1126/science.1193225] [PMID: 20813948]
[44]
Feun, L.; Modiano, M.; Lee, K.; Mao, J.; Marini, A.; Savaraj, N.; Plezia, P.; Almassian, B.; Colacino, E.; Fischer, J.; MacDonald, S. Phase I and pharmacokinetic study of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) using a single intravenous dose schedule. Cancer Chemother. Pharmacol., 2002, 50(3), 223-229.
[http://dx.doi.org/10.1007/s00280-002-0480-0] [PMID: 12203104]
[45]
Kovala-Demertzi, D.; Demertzis, M.A.; Filiou, E.; Pantazaki, A.A.; Yadav, P.N.; Miller, J.R.; Zheng, Y.; Kyriakidis, D.A. Platinum(II) and palladium(II) complexes with 2-acetyl pyridine 4N-ethyl thiosemicarbazone able to overcome the cis-platin resistance. Structure, antibacterial activity and DNA strand breakage. Biometals, 2003, 16(3), 411-418.
[http://dx.doi.org/10.1023/A:1022543718598] [PMID: 12680703]
[46]
Kasuga, N.C.; Sekino, K.; Ishikawa, M.; Honda, A.; Yokoyama, M.; Nakano, S.; Shimada, N.; Koumo, C.; Nomiya, K. Synthesis, structural characterization and antimicrobial activities of 12 zinc(II) complexes with four thiosemicarbazone and two semicarbazone ligands. J. Inorg. Biochem., 2003, 96(2-3), 298-310.
[http://dx.doi.org/10.1016/S0162-0134(03)00156-9] [PMID: 12888265]
[47]
Opletalová, V.; Kalinowski, D.S.; Vejsová, M.; Kunes, J.; Pour, M.; Jampílek, J.; Buchta, V.; Richardson, D.R. Identification and characterization of thiosemicarbazones with antifungal and antitumor effects: cellular iron chelation mediating cytotoxic activity. Chem. Res. Toxicol., 2008, 21(9), 1878-1889.
[http://dx.doi.org/10.1021/tx800182k] [PMID: 18698850]
[48]
Teitz, Y.; Ronen, D.; Vansover, A.; Stematsky, T.; Riggs, J.L. Inhibition of human immunodeficiency virus by N-methylisatin-beta 4′:4′-diethylthiosemicarbazone and N-allylisatin-beta-4′:4′-diallythiosemicarbazone. Antiviral Res., 1994, 24(4), 305-314.
[http://dx.doi.org/10.1016/0166-3542(94)90077-9] [PMID: 7993075]
[49]
Bharti, N.; Husain, K.; Gonzalez Garza, M.T.; Cruz-Vega, D.E.; Castro-Garza, J.; Mata-Cardenas, B.D.; Naqvi, F.; Azam, A. Synthesis and in vitro antiprotozoal activity of 5-nitrothiophene-2-carboxaldehyde thiosemicarbazone derivatives. Bioorg. Med. Chem. Lett., 2002, 12(23), 3475-3478.
[http://dx.doi.org/10.1016/S0960-894X(02)00703-5] [PMID: 12419387]
[50]
Das, J.; Chen, P.; Norris, D.; Padmanabha, R.; Lin, J.; Moquin, R.V.; Shen, Z.; Cook, L.S.; Doweyko, A.M.; Pitt, S.; Pang, S.; Shen, D.R.; Fang, Q.; de Fex, H.F.; McIntyre, K.W.; Shuster, D.J.; Gillooly, K.M.; Behnia, K.; Schieven, G.L.; Wityak, J.; Barrish, J.C. 2-aminothiazole as a novel kinase inhibitor template. Structure-activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1- piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (dasatinib, BMS-354825) as a potent pan-Src kinase inhibitor. J. Med. Chem., 2006, 49(23), 6819-6832.
[http://dx.doi.org/10.1021/jm060727j] [PMID: 17154512]
[51]
de Souza, M.V.; de Almeida, M.V. Drogas anti-VIH: passado, presente e perspectivas futuras. Quim. Nova, 2003, 26, 366-372.
[http://dx.doi.org/10.1590/S0100-40422003000300014]
[52]
Pasqualotto, A.C.; Thiele, K.O.; Goldani, L.Z. Novel triazole antifungal drugs: focus on isavuconazole, ravuconazole and albaconazole. Curr. Opin. Investig. Drugs, 2010, 11(2), 165-174.
[PMID: 20112166]
[53]
Fox, L.M.; Saravolatz, L.D. Nitazoxanide: a new thiazolide antiparasitic agent. Clin. Infect. Dis., 2005, 40(8), 1173-1180.
[http://dx.doi.org/10.1086/428839] [PMID: 15791519]
[54]
Knadler, M.P.; Bergstrom, R.F.; Callaghan, J.T.; Rubin, A. Nizatidine, an H2-blocker. Its metabolism and disposition in man. Drug Metab. Dispos., 1986, 14(2), 175-182.
[PMID: 2870891]
[55]
Nauen, R.; Ebbinghaus-Kintscher, U.; Salgado, V.L.; Kaussmann, M. Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic. Biochem. Physiol., 2003, 76, 55-69.
[http://dx.doi.org/10.1016/S0048-3575(03)00065-8]
[56]
el-Khawass, S.M.; Khalil, M.A.; Chaaban, I. Synthesis of some thiazoline and thiazolidinone derivatives of 1,4-benzoquinone as potential antimicrobial agents. Farmaco, 1989, 44(4), 415-421.
[PMID: 2673262]
[57]
Babaoglu, K.; Page, M.A.; Jones, V.C.; McNeil, M.R.; Dong, C.; Naismith, J.H.; Lee, R.E. Novel inhibitors of an emerging target in Mycobacterium tuberculosis; substituted thiazolidinones as inhibitors of dTDP-rhamnose synthesis. Bioorg. Med. Chem. Lett., 2003, 13(19), 3227-3230.
[http://dx.doi.org/10.1016/S0960-894X(03)00673-5] [PMID: 12951098]
[58]
Çapan, G.; Ulusoy, N.; Ergenç, N.; Kiraz, M. New 6-Phenylimidazo[2,1-b]thiazole derivatives: Synthesis and antifungal activity. Monatshefte Für Chemie. Chem. Mon., 1999, 130, 1399-1407.
[59]
Alves, A.J.; Leite, A.C.; De Santana, D.P.; Beltrao, T.M.; Coelho, M.R.; Gayral, P. Synthesis of some 4-oxo-delta 2-thiazolin-2-ylhydrazones as potential antiprotozoal agents. Farmaco, 1993, 48(8), 1167-1171.
[PMID: 8216678]
[60]
Rawal, R.K.; Prabhakar, Y.S.; Katti, S.B.; De Clercq, E. 2-(Aryl)-3-furan-2-ylmethyl-thiazolidin-4-ones as selective HIV-RT inhibitors. Bioorg. Med. Chem., 2005, 13(24), 6771-6776.
[http://dx.doi.org/10.1016/j.bmc.2005.07.063] [PMID: 16198576]
[61]
Vigorita, M.G.; Ottanà, R.; Monforte, F.; Maccari, R.; Trovato, A.; Monforte, M.T.; Taviano, M.F. Synthesis and antiinflammatory, analgesic activity of 3,3′-(1,2-ethanediyl)-bis[2-aryl-4-thiazolidinone] chiral compounds. Part 10. Bioorg. Med. Chem. Lett., 2001, 11(21), 2791-2794.
[http://dx.doi.org/10.1016/S0960-894X(01)00476-0] [PMID: 11597401]
[62]
Gududuru, V.; Hurh, E.; Dalton, J.T.; Miller, D.D. Discovery of 2-arylthiazolidine-4-carboxylic acid amides as a new class of cytotoxic agents for prostate cancer. J. Med. Chem., 2005, 48(7), 2584-2588.
[http://dx.doi.org/10.1021/jm049208b] [PMID: 15801848]
[63]
Liesen, A.P.; De Aquino, T.M.; Góes, A.J.; De Lima, J.G.; De Faria, A.R.; Alves, A.J. Métodos de obtenção, reatividade e importância biológica de 4-tiazolidinonas. Quim. Nova, 2008, 31, 369-376.
[http://dx.doi.org/10.1590/S0100-40422008000200033]
[64]
Tenório, R.P.; Carvalho, C.S.; Pessanha, C.S.; de Lima, J.G.; de Faria, A.R.; Alves, A.J.; de Melo, E.J.; Góes, A.J. Synthesis of thiosemicarbazone and 4-thiazolidinone derivatives and their in vitro anti-Toxoplasma gondii activity. Bioorg. Med. Chem. Lett., 2005, 15(10), 2575-2578.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.048] [PMID: 15863319]
[65]
de Aquino, T.M.; Liesen, A.P.; da Silva, R.E.; Lima, V.T.; Carvalho, C.S.; de Faria, A.R.; de Araújo, J.M.; de Lima, J.G.; Alves, A.J.; de Melo, E.J.; Góes, A.J. Synthesis, anti-Toxoplasma gondii and antimicrobial activities of benzaldehyde 4-phenyl-3-thiosemicarbazones and 2-[(phenylmethylene)hydrazono]-4-oxo-3-phenyl-5-thiazolidineacetic acids. Bioorg. Med. Chem., 2008, 16(1), 446-456.
[http://dx.doi.org/10.1016/j.bmc.2007.09.025] [PMID: 17905587]
[66]
Liesen, A.P.; de Aquino, T.M.; Carvalho, C.S.; Lima, V.T.; de Araújo, J.M.; de Lima, J.G.; de Faria, A.R.; de Melo, E.J.; Alves, A.J.; Alves, E.W.; Alves, A.Q.; Góes, A.J. Synthesis and evaluation of anti-Toxoplasma gondii and antimicrobial activities of thiosemicarbazides, 4-thiazolidinones and 1,3,4-thiadiazoles. Eur. J. Med. Chem., 2010, 45(9), 3685-3691.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.017] [PMID: 20541294]
[67]
Leite, A.C.; de Lima, R.S.; Moreira, D.R.; Cardoso, M.V.; Gouveia de Brito, A.C.; Farias Dos Santos, L.M.; Hernandes, M.Z.; Kiperstok, A.C.; de Lima, R.S.; Soares, M.B. Synthesis, docking, and in vitro activity of thiosemicarbazones, aminoacyl-thiosemicarbazides and acyl-thiazolidones against Trypanosoma cruzi. Bioorg. Med. Chem., 2006, 14(11), 3749-3757.
[http://dx.doi.org/10.1016/j.bmc.2006.01.034] [PMID: 16458521]
[68]
Leite, A.C.; Moreira, D.R.; Cardoso, M.V.; Hernandes, M.Z.; Alves Pereira, V.R.; Silva, R.O.; Kiperstok, A.C. Lima, Mda.S.; Soares, M.B. Synthesis, Cruzain docking, and in vitro studies of aryl-4-oxothiazolylhydrazones against Trypanosoma cruzi. ChemMedChem, 2007, 2(9), 1339-1345.
[http://dx.doi.org/10.1002/cmdc.200700022] [PMID: 17628867]
[69]
Hernandes, M.Z.; Rabello, M.M.; Leite, A.C.; Cardoso, M.V.; Moreira, D.R.; Brondani, D.J.; Simone, C.A.; Reis, L.C.; Souza, M.A.; Pereira, V.R.; Ferreira, R.S.; McKerrow, J.H. Studies toward the structural optimization of novel thiazolylhydrazone-based potent antitrypanosomal agents. Bioorg. Med. Chem., 2010, 18(22), 7826-7835.
[http://dx.doi.org/10.1016/j.bmc.2010.09.056] [PMID: 20961766]
[70]
Moreira, D.R.; Costa, S.P.; Hernandes, M.Z.; Rabello, M.M.; de Oliveira Filho, G.B.; de Melo, C.M.; da Rocha, L.F.; de Simone, C.A.; Ferreira, R.S.; Fradico, J.R.; Meira, C.S.; Guimarães, E.T.; Srivastava, R.M.; Pereira, V.R.; Soares, M.B.; Leite, A.C. Structural investigation of anti-Trypanosoma cruzi 2-iminothiazolidin-4-ones allows the identification of agents with efficacy in infected mice. J. Med. Chem., 2012, 55(24), 10918-10936.
[http://dx.doi.org/10.1021/jm301518v] [PMID: 23167554]
[71]
Moreira, D.R.; Leite, A.C.; Cardoso, M.V.; Srivastava, R.M.; Hernandes, M.Z.; Rabello, M.M.; da Cruz, L.F.; Ferreira, R.S.; de Simone, C.A.; Meira, C.S.; Guimaraes, E.T.; da Silva, A.C.; dos Santos, T.A.; Pereira, V.R.; Soares, M.B. Structural design, synthesis and structure-activity relationships of thiazolidinones with enhanced anti-Trypanosoma cruzi activity. ChemMedChem, 2014, 9(1), 177-188.
[http://dx.doi.org/10.1002/cmdc.201300354] [PMID: 24203393]
[72]
de Oliveira Filho, G.B.; de Oliveira Cardoso, M.V.; Espíndola, J.W.; Ferreira, L.F.; de Simone, C.A.; Ferreira, R.S.; Coelho, P.L.; Meira, C.S.; Magalhaes Moreira, D.R.; Soares, M.B.; Lima , Leite. A.C. Structural design, synthesis and pharmacological evaluation of 4-thiazolidinones against Trypanosoma cruzi. Bioorg. Med. Chem., 2015, 23(23), 7478-7486.
[http://dx.doi.org/10.1016/j.bmc.2015.10.048] [PMID: 26549870]
[73]
Chandra, J.N.; Malviya, M.; Sadashiva, C.T.; Subhash, M.N.; Rangappa, K.S. Effect of novel arecoline thiazolidinones as muscarinic receptor 1 agonist in Alzheimer’s dementia models. Neurochem. Int., 2008, 52(3), 376-383.
[http://dx.doi.org/10.1016/j.neuint.2007.07.006] [PMID: 17719699]
[74]
Crascì, L.; Vicini, P.; Incerti, M.; Cardile, V.; Avondo, S.; Panico, A. 2-Benzisothiazolylimino-5-benzylidene-4-thiazolidinones as protective agents against cartilage destruction. Bioorg. Med. Chem., 2015, 23(7), 1551-1556.
[http://dx.doi.org/10.1016/j.bmc.2015.02.002] [PMID: 25725607]
[75]
Ashour, H.M.; El-Ashmawy, I.M.; Bayad, A.E. Synthesis and pharmacological evaluation of new pyrazolyl benzenesulfonamides linked to polysubstituted pyrazoles and thiazolidinones as anti-inflammatory and analgesic agents. Monatsh. Chem., 2016, 147, 605-618.
[http://dx.doi.org/10.1007/s00706-015-1549-x]
[76]
Ottanà, R.; Maccari, R.; Barreca, M.L.; Bruno, G.; Rotondo, A.; Rossi, A.; Chiricosta, G.; Di Paola, R.; Sautebin, L.; Cuzzocrea, S.; Vigorita, M.G. 5-Arylidene-2-imino-4-thiazolidinones: design and synthesis of novel anti-inflammatory agents. Bioorg. Med. Chem., 2005, 13(13), 4243-4252.
[http://dx.doi.org/10.1016/j.bmc.2005.04.058] [PMID: 15905093]
[77]
Cihan-Üstündağ, G.; Gürsoy, E.; Naesens, L.; Ulusoy-Güzeldemirci, N.; Çapan, G. Synthesis and antiviral properties of novel indole-based thiosemicarbazides and 4-thiazolidinones. Bioorg. Med. Chem., 2016, 24(2), 240-246.
[http://dx.doi.org/10.1016/j.bmc.2015.12.008] [PMID: 26707844]
[78]
Ottanà, R.; Carotti, S.; Maccari, R.; Landini, I.; Chiricosta, G.; Caciagli, B.; Vigorita, M.G.; Mini, E. In vitro antiproliferative activity against human colon cancer cell lines of representative 4-thiazolidinones. Part I. Bioorg. Med. Chem. Lett., 2005, 15(17), 3930-3933.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.093] [PMID: 15993594]
[79]
Kamel, M.M.; Ali, H.I.; Anwar, M.M.; Mohamed, N.A.; Soliman, A.M. Synthesis, antitumor activity and molecular docking study of novel sulfonamide-Schiff’s bases, thiazolidinones, benzothiazinones and their C-nucleoside derivatives. Eur. J. Med. Chem., 2010, 45(2), 572-580.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.044] [PMID: 19932530]
[80]
Havrylyuk, D.; Mosula, L.; Zimenkovsky, B.; Vasylenko, O.; Gzella, A.; Lesyk, R. Synthesis and anticancer activity evaluation of 4-thiazolidinones containing benzothiazole moiety. Eur. J. Med. Chem., 2010, 45(11), 5012-5021.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.008] [PMID: 20810193]
[81]
Senkiv, J.; Finiuk, N.; Kaminskyy, D.; Havrylyuk, D.; Wojtyra, M.; Kril, I.; Gzella, A.; Stoika, R.; Lesyk, R. 5-Ene-4-thiazolidinones induce apoptosis in mammalian leukemia cells. Eur. J. Med. Chem., 2016, 117, 33-46.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.089] [PMID: 27089210]
[82]
Rawal, R.K.; Kumar, A.; Siddiqi, M.I.; Katti, S.B. Molecular docking studies on 4-thiazolidinones as HIV-1 RT inhibitors. J. Mol. Model., 2007, 13(1), 155-161.
[http://dx.doi.org/10.1007/s00894-006-0138-7] [PMID: 16969668]
[83]
Secci, D.; Carradori, S.; Bizzarri, B.; Chimenti, P.; De Monte, C.; Mollica, A.; Rivanera, D.; Zicari, A.; Mari, E.; Zengin, G.; Aktumsek, A. Novel 1,3-thiazolidin-4-one derivatives as promising anti-Candida agents endowed with anti-oxidant and chelating properties. Eur. J. Med. Chem., 2016, 117, 144-156.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.012] [PMID: 27100030]
[84]
Aridoss, G.; Amirthaganesan, S.; Kim, M.S.; Kim, J.T.; Jeong, Y.T. Synthesis, spectral and biological evaluation of some new thiazolidinones and thiazoles based on t-3-alkyl-r-2,c-6-diarylpiperidin-4-ones. Eur. J. Med. Chem., 2009, 44(10), 4199-4210.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.015] [PMID: 19535178]
[85]
Patel, D.; Patel, N.; Kumari, P.; Patel, N. Synthesis and characterization of some new azetidin-2-ones containing coumarin moiety and their antimicrobial study. Int. J. Chem., 2011, 3, 117-123.
[http://dx.doi.org/10.5539/ijc.v3n2p117]
[86]
HO, WHO | Chagas disease (American trypanosomiasis), World Heal. Organ. (2015). Available at:. http://www.who.int/mediacentre/factsheets/fs340/en/ [Accessed November 18, 2015].
[87]
Aufderheide, A.C.; Salo, W.; Madden, M.; Streitz, J.; Buikstra, J.; Guhl, F.; Arriaza, B.; Renier, C.; Wittmers, L.E., Jr; Fornaciari, G.; Allison, M.A. 9,000-year record of Chagas’ disease. Proc. Natl. Acad. Sci. USA, 2004, 101(7), 2034-2039.
[http://dx.doi.org/10.1073/pnas.0307312101] [PMID: 14766963]
[88]
Hotez, P.J.; Bottazzi, M.E.; Franco-Paredes, C.; Ault, S.K.; Periago, M.R. The neglected tropical diseases of Latin America and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl. Trop. Dis., 2008, 2(9)e300
[http://dx.doi.org/10.1371/journal.pntd.0000300] [PMID: 18820747]
[89]
Lee, B.Y.; Bacon, K.M.; Bottazzi, M.E.; Hotez, P.J. Global economic burden of Chagas disease: a computational simulation model. Lancet Infect. Dis., 2013, 13(4), 342-348.
[http://dx.doi.org/10.1016/S1473-3099(13)70002-1] [PMID: 23395248]
[90]
Tarleton, R.L.; Reithinger, R.; Urbina, J.A.; Kitron, U.; Gürtler, R.E. The challenges of Chagas Disease-- grim outlook or glimmer of hope. PLoS Med., 2007, 4(12)e332
[http://dx.doi.org/10.1371/journal.pmed.0040332] [PMID: 18162039]
[91]
WHO. 2016, WHO | What is human african trypanosomiasis. 2016.
[92]
Pink, R.; Hudson, A.; Mouriès, M-A.; Bendig, M. Opportunities and challenges in antiparasitic drug discovery. Nat. Rev. Drug Discov., 2005, 4(9), 727-740.
[http://dx.doi.org/10.1038/nrd1824] [PMID: 16138106]
[93]
Pepin, J.; Milord, F.; Guern, C.; Mpia, B.; Ethier, L.; Mansinsa, D. Trial of prednisolone for prevention of melarsoprol-induced encephalopathy in gambiense sleeping sickness. Lancet, 1989, 1(8649), 1246-1250.
[http://dx.doi.org/10.1016/S0140-6736(89)92340-4] [PMID: 2566790]
[94]
Tripathi, A.C.; Gupta, S.J.; Fatima, G.N.; Sonar, P.K.; Verma, A.; Saraf, S.K. 4-Thiazolidinones: the advances continue…. Eur. J. Med. Chem., 2014, 72, 52-77.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.017] [PMID: 24355348]
[95]
WHO. 2016, WHO | Leishmaniasis. 2016.
[96]
Desjeux, P. Leishmaniasis: current situation and new perspectives. Comp. Immunol. Microbiol. Infect. Dis., 2004, 27(5), 305-318.
[http://dx.doi.org/10.1016/j.cimid.2004.03.004] [PMID: 15225981]
[97]
Nagle, A.S.; Khare, S.; Kumar, A.B.; Supek, F.; Buchynskyy, A.; Mathison, C.J.; Chennamaneni, N.K.; Pendem, N.; Buckner, F.S.; Gelb, M.H.; Molteni, V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem. Rev., 2014, 114(22), 11305-11347.
[http://dx.doi.org/10.1021/cr500365f] [PMID: 25365529]
[98]
Ansari, M.Y.; Dikhit, M.R.; Sahoo, G.C.; Das, P. Comparative modeling of HGPRT enzyme of L. donovani and binding affinities of different analogs of GMP. Int. J. Biol. Macromol., 2012, 50(3), 637-649.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.01.010] [PMID: 22327112]
[99]
Ansari, M.Y.; Equbal, A.; Dikhit, M.R.; Mansuri, R.; Rana, S.; Ali, V.; Sahoo, G.C.; Das, P. Establishment of correlation between in-silico and in-vitro test analysis against Leishmania HGPRT to inhibitors. Int. J. Biol. Macromol., 2016, 83, 78-96.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.11.051] [PMID: 26616453]
[100]
Ansari, M.Y.; Ahsan, M.J.; Yasmin, S.; Sahoo, G.C.; Saini, V.; Das, P. In silico identification of novel antagonists and binding insights by structural and functional analyses of guanylate kinase of Leishmania donovani and interaction with inhibitors. Gene Rep., 2017, 8, 134-143.
[http://dx.doi.org/10.1016/j.genrep.2017.07.003]
[101]
Ahsan, M.J.; Ansari, M.Y.; Kumar, P.; Soni, M.; Yasmin, S.; Jadav, S.S. In vitro studies of the antileishmanial activity of the newer 2-(substitutedphenoxy)-N-[(aryl)methylidene]acetohydrazide analogues, Beni-Suef Univ. J. Basic Appl. Sci., 2016, 5, 119-125.
[102]
Burrows, J.N.; Chibale, K.; Wells, T.N. The state of the art in anti-malarial drug discovery and development. Curr. Top. Med. Chem., 2011, 11(10), 1226-1254.
[http://dx.doi.org/10.2174/156802611795429194] [PMID: 21401508]
[103]
WHO. 2016, WHO | Malaria,. 2016.
[104]
Gamo, F-J.; Sanz, L.M.; Vidal, J.; de Cozar, C.; Alvarez, E.; Lavandera, J-L.; Vanderwall, D.E.; Green, D.V.; Kumar, V.; Hasan, S.; Brown, J.R.; Peishoff, C.E.; Cardon, L.R.; Garcia-Bustos, J.F. Thousands of chemical starting points for antimalarial lead identification. Nature, 2010, 465(7296), 305-310.
[http://dx.doi.org/10.1038/nature09107] [PMID: 20485427]
[105]
Dorman, S.E.; Chaisson, R.E. From magic bullets back to the magic mountain: the rise of extensively drug-resistant tuberculosis. Nat. Med., 2007, 13(3), 295-298.
[http://dx.doi.org/10.1038/nm0307-295] [PMID: 17342143]
[106]
Kaufmann, S.H.; van Embden, J.D. Tuberculosis: a neglected disease strikes back. Trends Microbiol., 1993, 1(1), 2-5.
[http://dx.doi.org/10.1016/0966-842X(93)90015-J] [PMID: 7908248]
[107]
Zumla, A.; Nahid, P.; Cole, S.T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov., 2013, 12(5), 388-404.
[http://dx.doi.org/10.1038/nrd4001] [PMID: 23629506]
[108]
Lewandowski, C.M.; Co-investigator, N.; Lewandowski, C.M. WHO Glocal tuberculosis report 2015, WHO - Glob. Tuberc. Rep., 2015, 2015(1), 1689-1699.
[109]
Abrahams, K.A.; Chung, C.W.; Ghidelli-Disse, S.; Rullas, J.; Rebollo-López, M.J.; Gurcha, S.S.; Cox, J.A.; Mendoza, A.; Jiménez-Navarro, E.; Martínez-Martínez, M.S.; Neu, M.; Shillings, A.; Homes, P.; Argyrou, A.; Casanueva, R.; Loman, N.J.; Moynihan, P.J.; Lelièvre, J.; Selenski, C.; Axtman, M.; Kremer, L.; Bantscheff, M.; Angulo-Barturen, I.; Izquierdo, M.C.; Cammack, N.C.; Drewes, G.; Ballell, L.; Barros, D.; Besra, G.S.; Bates, R.H. Identification of KasA as the cellular target of an anti-tubercular scaffold. Nat. Commun., 2016, 7, 12581.
[http://dx.doi.org/10.1038/ncomms12581] [PMID: 27581223]
[110]
Ross, T.M. Dengue virus. Clin. Lab. Med., 2010, 30(1), 149-160.
[http://dx.doi.org/10.1016/j.cll.2009.10.007] [PMID: 20513545]
[111]
Pialoux, G.; Gaüzère, B-A.; Jauréguiberry, S.; Strobel, M. Chikungunya, an epidemic arbovirosis. Lancet Infect. Dis., 2007, 7(5), 319-327.
[http://dx.doi.org/10.1016/S1473-3099(07)70107-X] [PMID: 17448935]
[112]
Hayes, E.B. Zika virus outside Africa. Emerg. Infect. Dis., 2009, 15(9), 1347-1350.
[http://dx.doi.org/10.3201/eid1509.090442] [PMID: 19788800]
[113]
Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; Myers, M.F.; George, D.B.; Jaenisch, T.; Wint, G.R.; Simmons, C.P.; Scott, T.W.; Farrar, J.J.; Hay, S.I. The global distribution and burden of dengue. Nature, 2013, 496(7446), 504-507.
[http://dx.doi.org/10.1038/nature12060] [PMID: 23563266]
[114]
Brady, O.J.; Gething, P.W.; Bhatt, S.; Messina, J.P.; Brownstein, J.S.; Hoen, A.G.; Moyes, C.L.; Farlow, A.W.; Scott, T.W.; Hay, S.I. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis., 2012, 6(8)e1760
[http://dx.doi.org/10.1371/journal.pntd.0001760] [PMID: 22880140]
[115]
Pessoa, C.; Ferreira, P.M.; Lotufo, L.V.; de Moraes, M.O.; Cavalcanti, S.M.; Coêlho, L.C.; Hernandes, M.Z.; Leite, A.C.; De Simone, C.A.; Costa, V.M.; Souza, V.M. Discovery of phthalimides as immunomodulatory and antitumor drug prototypes. ChemMedChem, 2010, 5(4), 523-528.
[http://dx.doi.org/10.1002/cmdc.200900525] [PMID: 20112332]
[116]
Long, T.E.; Lu, X.; Galizzi, M.; Docampo, R.; Gut, J.; Rosenthal, P.J. Phosphonium lipocations as antiparasitic agents. Bioorg. Med. Chem. Lett., 2012, 22(8), 2976-2979.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.045] [PMID: 22414614]
[117]
González, M.A.; Clark, J.; Connelly, M.; Rivas, F. Antimalarial activity of abietane ferruginol analogues possessing a phthalimide group. Bioorg. Med. Chem. Lett., 2014, 24(22), 5234-5237.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.061] [PMID: 25316317]
[118]
Singh, A.K.; Rajendran, V.; Pant, A.; Ghosh, P.C.; Singh, N.; Latha, N.; Garg, S.; Pandey, K.C.; Singh, B.K.; Rathi, B. Design, synthesis and biological evaluation of functionalized phthalimides: a new class of antimalarials and inhibitors of falcipain-2, a major hemoglobinase of malaria parasite. Bioorg. Med. Chem., 2015, 23(8), 1817-1827.
[http://dx.doi.org/10.1016/j.bmc.2015.02.029] [PMID: 25766631]
[119]
Santos, J.L.; Yamasaki, P.R.; Chin, C.M.; Takashi, C.H.; Pavan, F.R.; Leite, C.Q. Synthesis and in vitro anti Mycobacterium tuberculosis activity of a series of phthalimide derivatives. Bioorg. Med. Chem., 2009, 17(11), 3795-3799.
[120]
Gomes, P.A.; Oliveira, A.R.; Cardoso, M.V. Santiago, Ede.F.; Barbosa, Mde.O.; de Siqueira, L.R.; Moreira, D.R.; Bastos, T.M.; Brayner, F.A.; Soares, M.B.; Mendes, A.P.; de Castro, M.C.; Pereira, V.R.; Leite, A.C. Phthalimido-thiazoles as building blocks and their effects on the growth and morphology of Trypanosoma cruzi. Eur. J. Med. Chem., 2016, 111, 46-57.
[121]
Santiago, Ede.F.; de Oliveira, S.A.; de Oliveira Filho, G.B.; Moreira, D.R.; Gomes, P.A.; da Silva, A.L.; de Barros, A.F.; da Silva, A.C.; Dos Santos, T.A.; Pereira, V.R.; Gonçalves, G.G.; Brayner, F.A.; Alves, L.C.; Wanderley, A.G.; Leite, A.C. Evaluation of the anti-Schistosoma mansoni activity of thiosemicarbazones and thiazoles. Antimicrob. Agents Chemother., 2014, 58(1), 352-363.
[http://dx.doi.org/10.1128/AAC.01900-13] [PMID: 24165185]
[122]
Rad, R.; Mracec, M.; Mracec, M.; Oprea, T. The privileged structures hypothesis for G proteincoupled receptors - some preliminar results. Rev. Roum. Chim., 2007, 52, 853-858.
[123]
de Sá Alves, F.R.; Barreiro, E.J.; Fraga, C.A. From nature to drug discovery: the indole scaffold as a ‘privileged structure’. Mini Rev. Med. Chem., 2009, 9(7), 782-793.
[http://dx.doi.org/10.2174/138955709788452649] [PMID: 19519503]
[124]
Shimazaki, Y.; Yajima, T.; Takani, M.; Yamauchi, O. Metal complexes involving indole rings: Structures and effects of metal-indole interactions. Coord. Chem. Rev., 2009, 253, 479-492.
[http://dx.doi.org/10.1016/j.ccr.2008.04.012]
[125]
Bergman, J.; Lindström, J-O.; Tilstam, U. The structure and properties of some indolic constituents in Couroupita guianensis aubl. Tetrahedron, 1985, 41, 2879-2881.
[http://dx.doi.org/10.1016/S0040-4020(01)96609-8]
[126]
Chiyanzu, I.; Hansell, E.; Gut, J.; Rosenthal, P.J.; McKerrow, J.H.; Chibale, K. Synthesis and evaluation of isatins and thiosemicarbazone derivatives against cruzain, falcipain-2 and rhodesain. Bioorg. Med. Chem. Lett., 2003, 13(20), 3527-3530.
[http://dx.doi.org/10.1016/S0960-894X(03)00756-X] [PMID: 14505663]
[127]
Kekulé, A. Ueber die Constitution des Isatins, der Isatinsäure und des Indols. Ber. Dtsch. Chem. Ges., 1869, 2, 748-749.
[http://dx.doi.org/10.1002/cber.186900201293]
[128]
Singh, G.S.; Desta, Z.Y. Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chem. Rev., 2012, 112(11), 6104-6155.
[http://dx.doi.org/10.1021/cr300135y] [PMID: 22950860]
[129]
Raj, R.; Singh, P.; Singh, P.; Gut, J.; Rosenthal, P.J.; Kumar, V. Azide-alkyne cycloaddition en route to 1H-1,2,3-triazole-tethered 7-chloroquinoline-isatin chimeras: synthesis and antimalarial evaluation. Eur. J. Med. Chem., 2013, 62, 590-596.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.032] [PMID: 23434528]
[130]
Raj, R.; Gut, J.; Rosenthal, P.J.; Kumar, V. 1H-1,2,3-Triazole-tethered isatin-7-chloroquinoline and 3-hydroxy-indole-7-chloroquinoline conjugates: synthesis and antimalarial evaluation. Bioorg. Med. Chem. Lett., 2014, 24(3), 756-759.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.109] [PMID: 24424135]
[131]
Raj, R.; Biot, C.; Carrère-Kremer, S.; Kremer, L.; Guérardel, Y.; Gut, J.; Rosenthal, P.J.; Forge, D.; Kumar, V. 7-chloroquinoline-isatin conjugates: antimalarial, antitubercular, and cytotoxic evaluation. Chem. Biol. Drug Des., 2014, 83(5), 622-629.
[http://dx.doi.org/10.1111/cbdd.12273] [PMID: 24341638]
[132]
Martinez-Mayorga, K.; Byler, K.G.; Ramirez-Hernandez, A.I.; Terrazas-Alvares, D.E. Cruzain inhibitors: efforts made, current leads and a structural outlook of new hits. Drug Discov. Today, 2015, 20(7), 890-898.
[http://dx.doi.org/10.1016/j.drudis.2015.02.004] [PMID: 25697479]
[133]
Pervez, H.; Manzoor, N.; Yaqub, M.; Khan, K.M. 5-Nitroisatin-derived thiosemicarbazones: potential antileishmanial agents. J. Enzyme Inhib. Med. Chem., 2014, 29(5), 628-632.
[http://dx.doi.org/10.3109/14756366.2013.836641] [PMID: 24090424]
[134]
Mishra, B.B.; Kale, R.R.; Singh, R.K.; Tiwari, V.K. Alkaloids: future prospective to combat leishmaniasis. Fitoterapia, 2009, 80(2), 81-90.
[http://dx.doi.org/10.1016/j.fitote.2008.10.009] [PMID: 19015012]
[135]
Chan-Bacab, M.J.; Peña-Rodríguez, L.M. Plant natural products with leishmanicidal activity. Nat. Prod. Rep., 2001, 18(6), 674-688.
[http://dx.doi.org/10.1039/b100455g] [PMID: 11820764]
[136]
Mishra, B.B.; Singh, R.K.; Srivastava, A.; Tripathi, V.J.; Tiwari, V.K. Fighting against Leishmaniasis: search of alkaloids as future true potential anti-Leishmanial agents. Mini Rev. Med. Chem., 2009, 9(1), 107-123.
[http://dx.doi.org/10.2174/138955709787001758] [PMID: 19149664]
[137]
Lavrado, J.; Moreira, R.; Paulo, A. Indoloquinolines as scaffolds for drug discovery. Curr. Med. Chem., 2010, 17(22), 2348-2370.
[http://dx.doi.org/10.2174/092986710791698521] [PMID: 20491639]
[138]
Lavrado, J.; Paulo, A.; Gut, J.; Rosenthal, P.J.; Moreira, R. Cryptolepine analogues containing basic aminoalkyl side-chains at C-11: synthesis, antiplasmodial activity, and cytotoxicity. Bioorg. Med. Chem. Lett., 2008, 18(4), 1378-1381.
[139]
Oluwafemi, A.J.; Okanla, E.O.; Camps, P.; Muñoz-Torrerob, D.; Mackey, Z.B.; Chiang, P.K.; Seville, S.; Wright, C.W. Evaluation of cryptolepine and huperzine derivatives as lead compounds towards new agents for the treatment of human African trypanosomiasis. Nat. Prod. Commun., 2009, 4(2), 193-198.
[PMID: 19370921]
[140]
Aguirre, G.; Boiani, L.; Cerecetto, H.; Fernández, M.; González, M.; Denicola, A.; Otero, L.; Gambino, D.; Rigol, C.; Olea-Azar, C.; Faundez, M. In vitro activity and mechanism of action against the protozoan parasite Trypanosoma cruzi of 5-nitrofuryl containing thiosemicarbazones. Bioorg. Med. Chem., 2004, 12(18), 4885-4893.
[http://dx.doi.org/10.1016/j.bmc.2004.07.003] [PMID: 15336268]
[141]
Du, X.; Guo, C.; Hansell, E.; Doyle, P.S.; Caffrey, C.R.; Holler, T.P.; McKerrow, J.H.; Cohen, F.E. Synthesis and structure-activity relationship study of potent trypanocidal thio semicarbazone inhibitors of the trypanosomal cysteine protease cruzain. J. Med. Chem., 2002, 45(13), 2695-2707.
[http://dx.doi.org/10.1021/jm010459j] [PMID: 12061873]
[142]
Greenbaum, D.C.; Mackey, Z.; Hansell, E.; Doyle, P.; Gut, J.; Caffrey, C.R.; Lehrman, J.; Rosenthal, P.J.; McKerrow, J.H.; Chibale, K. Synthesis and structure-activity relationships of parasiticidal thiosemicarbazone cysteine protease inhibitors against Plasmodium falciparum, Trypanosoma brucei, and Trypanosoma cruzi. J. Med. Chem., 2004, 47(12), 3212-3219.
[http://dx.doi.org/10.1021/jm030549j] [PMID: 15163200]
[143]
Fujii, N.; Mallari, J.P.; Hansell, E.J.; Mackey, Z.; Doyle, P.; Zhou, Y.M.; Gut, J.; Rosenthal, P.J.; McKerrow, J.H.; Guy, R.K. Discovery of potent thiosemicarbazone inhibitors of rhodesain and cruzain. Bioorg. Med. Chem. Lett., 2005, 15(1), 121-123.
[http://dx.doi.org/10.1016/j.bmcl.2004.10.023] [PMID: 15582423]
[144]
Siles, R.; Chen, S-E.; Zhou, M.; Pinney, K.G.; Trawick, M.L. Design, synthesis, and biochemical evaluation of novel cruzain inhibitors with potential application in the treatment of Chagas’ disease. Bioorg. Med. Chem. Lett., 2006, 16(16), 4405-4409.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.041] [PMID: 16781147]
[145]
Caputto, M.E.; Fabian, L.E.; Benítez, D.; Merlino, A.; Ríos, N.; Cerecetto, H.; Moltrasio, G.Y.; Moglioni, A.G.; González, M.; Finkielsztein, L.M. Thiosemicarbazones derived from 1-indanones as new anti-Trypanosoma cruzi agents. Bioorg. Med. Chem., 2011, 19(22), 6818-6826.
[http://dx.doi.org/10.1016/j.bmc.2011.09.037] [PMID: 22000947]
[146]
Magalhaes Moreira, D.R.; de Oliveira, A.D.; Teixeira de Moraes Gomes, P.A.; de Simone, C.A.; Villela, F.S.; Ferreira, R.S.; da Silva, A.C.; dos Santos, T.A.; Brelaz de Castro, M.C.; Pereira, V.R.; Leite, A.C. Conformational restriction of aryl thiosemicarbazones produces potent and selective anti-Trypanosoma cruzi compounds which induce apoptotic parasite death. Eur. J. Med. Chem., 2014, 75, 467-478.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.001] [PMID: 24561675]
[147]
Espíndola, J.W.; Cardoso, M.V.; Filho, G.B.; Oliveira, E. Silva, D.A.; Moreira, D.R.; Bastos, T.M.; Simone, C.A.; Soares, M.B.; Villela, F.S.; Ferreira, R.S.; Castro, M.C.; Pereira, V.R.; Murta, S.M.; Sales Junior, P.A.; Romanha, A.J.; Leite, A.C. Synthesis and structure-activity relationship study of a new series of antiparasitic aryloxyl thiosemicarbazones inhibiting Trypanosoma cruzi cruzain. Eur. J. Med. Chem., 2015, 101, 818-835.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.048] [PMID: 26231082]
[148]
Vieites, M.; Otero, L.; Santos, D.; Olea-Azar, C.; Norambuena, E.; Aguirre, G.; Cerecetto, H.; González, M.; Kemmerling, U.; Morello, A.; Diego Maya, J.; Gambino, D. Platinum-based complexes of bioactive 3-(5-nitrofuryl)acroleine thiosemicarbazones showing anti-Trypanosoma cruzi activity. J. Inorg. Biochem., 2009, 103(3), 411-418.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.12.004] [PMID: 19187969]
[149]
Rettondin, A.R.; Carneiro, Z.A.; Gonçalves, A.C.; Ferreira, V.F.; Oliveira, C.G.; Lima, A.N.; Oliveira, R.J.; de Albuquerque, S.; Deflon, V.M.; Maia, P.I. Gold(III) complexes with ONS-Tridentate thiosemicarbazones: Toward selective trypanocidal drugs. Eur. J. Med. Chem., 2016, 120, 217-226.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.003] [PMID: 27191616]
[150]
Britta, E.A.; Scariot, D.B.; Falzirolli, H.; Ueda-Nakamura, T.; Silva, C.C.; Filho, B.P.; Borsali, R.; Nakamura, C.V. Cell death and ultrastructural alterations in Leishmania amazonensis caused by new compound 4-Nitrobenzaldehyde thiosemicarbazone derived from S-limonene. BMC Microbiol., 2014, 14, 236.
[http://dx.doi.org/10.1186/s12866-014-0236-0] [PMID: 25253283]
[151]
de Melos, J.L.; Torres-Santos, E.C. Faiões, Vdos.S.; Del Cistia, Cde.N.; Sant’Anna, C.M.; Rodrigues-Santos, C.E.; Echevarria, A. Novel 3,4-methylenedioxyde-6-X-benzaldehyde-thiosemicarbazones: Synthesis and antileishmanial effects against Leishmania amazonensis. Eur. J. Med. Chem., 2015, 103, 409-417.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.009] [PMID: 26375353]
[152]
Britta, E.A.; Silva, A.P.; Ueda-Nakamura, T.; Dias-Filho, B.P.; Silva, C.C.; Sernaglia, R.L.; Nakamura, C.V. Benzaldehyde thiosemicarbazone derived from limonene complexed with copper induced mitochondrial dysfunction in Leishmania amazonensis. PLoS One, 2012, 7(8)e41440
[http://dx.doi.org/10.1371/journal.pone.0041440] [PMID: 22870222]
[153]
Sijwali, P.S.; Rosenthal, P.J. Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 2004, 101(13), 4384-4389.
[http://dx.doi.org/10.1073/pnas.0307720101] [PMID: 15070727]
[154]
Sijwali, P.S.; Kato, K.; Seydel, K.B.; Gut, J.; Lehman, J.; Klemba, M.; Goldberg, D.E.; Miller, L.H.; Rosenthal, P.J. Plasmodium falciparum cysteine protease falcipain-1 is not essential in erythrocytic stage malaria parasites. Proc. Natl. Acad. Sci. USA, 2004, 101(23), 8721-8726.
[http://dx.doi.org/10.1073/pnas.0402738101] [PMID: 15166288]
[155]
de Oliveira, R.B.; de Souza-Fagundes, E.M.; Soares, R.P.; Andrade, A.A.; Krettli, A.U.; Zani, C.L. Synthesis and antimalarial activity of semicarbazone and thiosemicarbazone derivatives. Eur. J. Med. Chem., 2008, 43(9), 1983-1988.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.012] [PMID: 18222568]
[156]
Duan, L.P.; Zhang, H.B. Novel thiosemicarbazones derivatives bearing aromatic iodine moiety: Design, synthesis and anti-malarial activity. Arab. J. Chem., 2011, 4, 231-234.
[http://dx.doi.org/10.1016/j.arabjc.2010.06.042]
[157]
Khanye, S.D.; Smith, G.S.; Lategan, C.; Smith, P.J.; Gut, J.; Rosenthal, P.J.; Chibale, K. Synthesis and in vitro evaluation of gold(I) thiosemicarbazone complexes for antimalarial activity. J. Inorg. Biochem., 2010, 104(10), 1079-1083.
[http://dx.doi.org/10.1016/j.jinorgbio.2010.06.005] [PMID: 20621360]
[158]
Sriram, D.; Yogeeswari, P.; Dhakla, P.; Senthilkumar, P.; Banerjee, D. N-Hydroxythiosemicarbazones: synthesis and in vitro antitubercular activity. Bioorg. Med. Chem. Lett., 2007, 17(7), 1888-1891.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.037] [PMID: 17276683]
[159]
Pavan, F.R. da S Maia, P.I.; Leite, S.R.; Deflon, V.M.; Batista, A.A.; Sato, D.N.; Franzblau, S.G.; Leite, C.Q. Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazones: anti-Mycobacterium tuberculosis activity and cytotoxicity. Eur. J. Med. Chem., 2010, 45(5), 1898-1905.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.028] [PMID: 20163897]
[160]
Oliveira, C.G. da S Maia, P.I.; Souza, P.C.; Pavan, F.R.; Leite, C.Q.; Viana, R.B.; Batista, A.A.; Nascimento, O.R.; Deflon, V.M. Manganese(II) complexes with thiosemicarbazones as potential anti-Mycobacterium tuberculosis agents. J. Inorg. Biochem., 2014, 132, 21-29.
[http://dx.doi.org/10.1016/j.jinorgbio.2013.10.011] [PMID: 24188534]
[161]
da Silva, J.B.; Navarro, D.M.; da Silva, A.G.; Santos, G.K.; Dutra, K.A.; Moreira, D.R.; Ramos, M.N.; Espíndola, J.W.; de Oliveira, A.D.; Brondani, D.J.; Leite, A.C.; Hernandes, M.Z.; Pereira, V.R.; da Rocha, L.F.; de Castro, M.C.; de Oliveira, B.C.; Lan, Q.; Merz, K.M. Jr Thiosemicarbazones as Aedes aegypti larvicidal. Eur. J. Med. Chem., 2015, 100, 162-175.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.061] [PMID: 26087027]
[162]
Padmanabhan, P.; Khaleefathullah, S.; Kaveri, K.; Palani, G.; Ramanathan, G.; Thennarasu, S. Antiviral activity of Thiosemicarbazones derived from α-amino acids against Dengue virus. J. Med. Virol., 2016.
[PMID: 27490721]
[163]
Siddiqui, N.; Arshad, M.F.; Ahsan, W.; Alam, M.S. Thiazoles: A valuable insight into the recent advances and biological activities. Int. J. Pharm. Sci. Drug Res., 2009, 1, 136-143.
[164]
González Cabrera, D.; Douelle, F.; Feng, T-S.; Nchinda, A.T.; Younis, Y.; White, K.L.; Wu, Q.; Ryan, E.; Burrows, J.N.; Waterson, D.; Witty, M.J.; Wittlin, S.; Charman, S.A.; Chibale, K. Novel orally active antimalarial thiazoles. J. Med. Chem., 2011, 54(21), 7713-7719.
[http://dx.doi.org/10.1021/jm201108k] [PMID: 21966980]
[165]
Wilson, W.D.; Nguyen, B.; Tanious, F.A.; Mathis, A.; Hall, J.E.; Stephens, C.E.; Boykin, D.W. Dications that target the DNA minor groove: compound design and preparation, DNA interactions, cellular distribution and biological activity. Curr. Med. Chem. Anticancer Agents, 2005, 5(4), 389-408.
[http://dx.doi.org/10.2174/1568011054222319] [PMID: 16101490]
[166]
Scott, F.J.; Khalaf, A.I.; Duffy, S.; Avery, V.M.; Suckling, C.J. Selective anti-malarial minor groove binders. Bioorg. Med. Chem. Lett., 2016, 26(14), 3326-3329.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.039] [PMID: 27212070]
[167]
Álvarez, G.; Varela, J.; Márquez, P.; Gabay, M.; Arias Rivas, C.E.; Cuchilla, K.; Echeverría, G.A.; Piro, O.E.; Chorilli, M.; Leal, S.M.; Escobar, P.; Serna, E.; Torres, S.; Yaluff, G.; Vera de Bilbao, N.I.; González, M.; Cerecetto, H. Optimization of antitrypanosomatid agents: identification of nonmutagenic drug candidates with in vivo activity. J. Med. Chem., 2014, 57(10), 3984-3999.
[http://dx.doi.org/10.1021/jm500018m] [PMID: 24749923]
[168]
Álvarez, G.; Varela, J.; Cruces, E.; Fernández, M.; Gabay, M.; Leal, S.M.; Escobar, P.; Sanabria, L.; Serna, E.; Torres, S.; Figueredo Thiel, S.J.; Yaluff, G.; Vera de Bilbao, N.I.; Cerecetto, H.; González, M. Identification of a new amide-containing thiazole as a drug candidate for treatment of Chagas’ disease. Antimicrob. Agents Chemother., 2015, 59(3), 1398-1404.
[http://dx.doi.org/10.1128/AAC.03814-14] [PMID: 25512408]
[169]
Cardoso, M.V.; de Siqueira, L.R.; da Silva, E.B.; Costa, L.B.; Hernandes, M.Z.; Rabello, M.M.; Ferreira, R.S.; da Cruz, L.F.; Moreira, D.R.; Pereira, V.R.; de Castro, M.C.; Bernhardt, P.V.; Leite, A.C. 2-Pyridyl thiazoles as novel anti-Trypanosoma cruzi agents: structural design, synthesis and pharmacological evaluation. Eur. J. Med. Chem., 2014, 86, 48-59.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.012] [PMID: 25147146]
[170]
de Moraes Gomes, P.A.T.; de Oliveira Barbosa, M.; Farias Santiago, E.; de Oliveira Cardoso, M.V.; Capistrano Costa, N.T.; Hernandes, M.Z.; Moreira, D.R.M.; da Silva, A.C.; Dos Santos, T.A.R.; Pereira, V.R.A.; Brayner Dos Santosd, F.A.; do Nascimento Pereira, G.A.; Ferreira, R.S.; Leite, A.C.L. New 1,3-thiazole derivatives and their biological and ultrastructural effects on Trypanosoma cruzi. Eur. J. Med. Chem., 2016, 121, 387-398.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.050] [PMID: 27295485]
[171]
Costa, L.B.; Cardoso, M.V.; de Oliveira Filho, G.B.; de Moraes Gomes, P.A.; Espíndola, J.W.; de Jesus Silva, T.G.; Torres, P.H.; Silva, F.P., Junior; Martin, J.; de Figueiredo, R.C.; Leite, A.C. Compound profiling and 3D-QSAR studies of hydrazone derivatives with activity against intracellular Trypanosoma cruzi. Bioorg. Med. Chem., 2016, 24(8), 1608-1618.
[http://dx.doi.org/10.1016/j.bmc.2016.02.027] [PMID: 26964673]
[172]
Pages, L.B.; Pichel, J.C.; Menendez, R.F.; Esther, P.F.; Del Valle, S.G.; Maria, L.L.; Losana, A.M.; Wolfendale, M.J. (Pyrazol-3-yl)-1, 3, 4-thiadiazol-2-amine and (pyrazol-3- yl)-1, 3, 4-thiazol-2-amine compounds; 2013.
[173]
Shirude, P.S.; Madhavapeddi, P.; Naik, M.; Murugan, K.; Shinde, V.; Nandishaiah, R.; Bhat, J.; Kumar, A.; Hameed, S.; Holdgate, G.; Davies, G.; McMiken, H.; Hegde, N.; Ambady, A.; Venkatraman, J.; Panda, M.; Bandodkar, B.; Sambandamurthy, V.K.; Read, J.A. Methyl-thiazoles: a novel mode of inhibition with the potential to develop novel inhibitors targeting InhA in Mycobacterium tuberculosis. J. Med. Chem., 2013, 56(21), 8533-8542.
[http://dx.doi.org/10.1021/jm4012033] [PMID: 24107081]
[174]
Moraski, G.C.; Seeger, N.; Miller, P.A.; Oliver, A.G.; Boshoff, H.I.; Cho, S. Arrival of imidazo[2,1- b ]thiazole-5- carboxamides: Potent anti-tuberculosis agents that target QcrB. ACS Infect. Dis, 2016. acsinfecdis.5b00154.
[http://dx.doi.org/10.1021/acsinfecdis.5b00154]
[175]
Smith, T.K.; Young, B.L.; Denton, H.; Hughes, D.L.; Wagner, G.K. First small molecular inhibitors of T. brucei dolicholphosphate mannose synthase (DPMS), a validated drug target in African sleeping sickness. Bioorg. Med. Chem. Lett., 2009, 19(6), 1749-1752.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.083] [PMID: 19217283]
[176]
Zhang, X.; Li, X.; Li, D.; Qu, G.; Wang, J.; Loiseau, P.M.; Fan, X. Ionic liquid mediated and promoted eco-friendly preparation of thiazolidinone and pyrimidine nucleoside-thiazolidinone hybrids and their antiparasitic activities. Bioorg. Med. Chem. Lett., 2009, 19(22), 6280-6283.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.101] [PMID: 19819695]
[177]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Day, C.W.; Smee, D.F.; Grellier, P.; Lesyk, R. Synthesis and biological activity evaluation of 5-pyrazoline substituted 4-thiazolidinones. Eur. J. Med. Chem., 2013, 66, 228-237.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.044]
[178]
Havrylyuk, D.; Zimenkovsky, B.; Karpenko, O.; Grellier, P.; Lesyk, R. Synthesis of pyrazoline-thiazolidinone hybrids with trypanocidal activity. Eur. J. Med. Chem., 2014, 85, 245-254.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.103] [PMID: 25089808]
[179]
Vintonyak, V.V.; Warburg, K.; Over, B.; Hübel, K.; Rauh, D.; Waldmann, H. Identification and further development of thiazolidinones spiro-fused to indolin-2-ones as potent and selective inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase B. Tetrahedron, 2011, 67, 6713-6729.
[http://dx.doi.org/10.1016/j.tet.2011.04.026]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy