Abstract
Cerebral ischemia induces many degenerative cellular reactions, including the release of excitatory amino acids, the formation of oxygen free radicals, Ca2+ overload, the activation of several cellular enzyme systems such as Ca2+ dependent proteases, and the initiation of genomic responses that can affect the tissue outside the area of reduced blood flow. Furthermore, increasing evidence indicates that apoptosis contributes to the death of brain cells following cerebral ischemia. Several studies have shown that cerebral ischemia alters the expression of genes, some of which may play protective or harmful roles. Although many genes have the potential to treat cerebral ischemia, target genes or their translated products are often difficult to express, if at all, in brain cells. However, adenovirus-mediated gene transfer can overcome this disadvantage. To date, many treatment strategies have been developed for cerebral ischemia using target genes such as neuronal apoptosis inhibitory protein (NAIP), glial cell line-derived neurotrophic factor (GDNF), sensitive to apoptosis gene (SAG), 150-kDa oxygen-regulated protein (ORP150), etc. Moreover, new vectors and gene delivery systems are constantly being invented although there is no perfect vector to date. Gene therapy could constitute a powerful strategy to treat cerebral ischemia in the near future.
Keywords: cerebral ischemia, cerebral infarction, gene therapy, adenovirus vector
Current Gene Therapy
Title: Recent Advances in Adenovirus-mediated Gene Therapy for Cerebral Ischemia
Volume: 3 Issue: 1
Author(s): Makoto Masumura and Ryuji Hata
Affiliation:
Keywords: cerebral ischemia, cerebral infarction, gene therapy, adenovirus vector
Abstract: Cerebral ischemia induces many degenerative cellular reactions, including the release of excitatory amino acids, the formation of oxygen free radicals, Ca2+ overload, the activation of several cellular enzyme systems such as Ca2+ dependent proteases, and the initiation of genomic responses that can affect the tissue outside the area of reduced blood flow. Furthermore, increasing evidence indicates that apoptosis contributes to the death of brain cells following cerebral ischemia. Several studies have shown that cerebral ischemia alters the expression of genes, some of which may play protective or harmful roles. Although many genes have the potential to treat cerebral ischemia, target genes or their translated products are often difficult to express, if at all, in brain cells. However, adenovirus-mediated gene transfer can overcome this disadvantage. To date, many treatment strategies have been developed for cerebral ischemia using target genes such as neuronal apoptosis inhibitory protein (NAIP), glial cell line-derived neurotrophic factor (GDNF), sensitive to apoptosis gene (SAG), 150-kDa oxygen-regulated protein (ORP150), etc. Moreover, new vectors and gene delivery systems are constantly being invented although there is no perfect vector to date. Gene therapy could constitute a powerful strategy to treat cerebral ischemia in the near future.
Export Options
About this article
Cite this article as:
Masumura Makoto and Hata Ryuji, Recent Advances in Adenovirus-mediated Gene Therapy for Cerebral Ischemia, Current Gene Therapy 2003; 3 (1) . https://dx.doi.org/10.2174/1566523033347516
DOI https://dx.doi.org/10.2174/1566523033347516 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
The Proteolytic Activation of Angiogenic and Lymphangiogenic Growth Factors in Cancer – Its Potential Relevance for Therapeutics and Diagnostics
Current Medicinal Chemistry Novel Patents and Cancer Therapies for Transforming Growth Factor- Beta and Urokinase Type Plasminogen Activator: Potential Use of Their Interplay in Tumorigenesis
Recent Patents on Anti-Cancer Drug Discovery Expression and Function of Angiomodulating Cytokines in Rheumatoid Arthritis and Experimental Arthritis: Important Therapeutic Targets
Current Immunology Reviews (Discontinued) Oncotarget Strategies For Herpes Simplex Virus-1
Current Gene Therapy Obesity and Inflammation: Colorectal Cancer Engines
Current Molecular Pharmacology Nanoparticulate Drug Delivery System to Overcome the Limitations of Conventional Curcumin in the Treatment of Various Cancers: A Review
Drug Delivery Letters Magnetite Nanostructures with Applications in Cancer Therapy
Current Proteomics Cervical Cancer Diagnosis: Insights into Biochemical Biomarkers and Imaging Techniques
Combinatorial Chemistry & High Throughput Screening MicroRNAs as Diagnostic, Prognostic and Predictive Biomarkers of Cardiac Disease
Recent Patents on Biomarkers AKT-pathway Inhibition in Chronic Lymphocytic Leukemia Reveals Response Relationships Defined by TCL1
Current Cancer Drug Targets Identification of Functional Peptides from Natural and Synthetic Products on Their Anticancer Activities by Tumor Targeting
Current Medicinal Chemistry Scope of Nanotechnology-based Radiation Therapy and Thermotherapy Methods in Cancer Treatment
Current Cancer Drug Targets 7-Keto-Δ5-Steroids: Key-Molecules Owning Particular Biological and Chemical Interest
Mini-Reviews in Medicinal Chemistry Spermine Metabolism and Anticancer Therapy
Current Cancer Drug Targets Targeting Oncogenes and Tumor Suppressors genes to Mitigate Chemoresistance
Current Cancer Drug Targets Theranostic Radiopharmaceuticals Targeting Cancer-Associated Fibroblasts
Current Radiopharmaceuticals The Alcoholic Bark Extract of <i>Terminalia Arjuna</i> Exhibits Cytotoxic and Cytostatic Activity on Jurkat Leukemia Cells
Venoms and Toxins Signaling Intermediates (PI3K/PTEN/AKT/mTOR and RAF/MEK/ERK Pathways) as Therapeutic Targets for Anti-Cancer and Anti-Angiogenesis Treatments
Current Signal Transduction Therapy An Integrative Systems Analysis of High-grade Glioma Cell Lines: TLRs, Wnt, BRCA1, Netrins, STXBP1 and MDH1 Provide Putative Molecular Targets for Therapeutic Intervention
Current Pharmacogenomics and Personalized Medicine In Vivo Apoptosis Imaging Agents and Strategies
Anti-Cancer Agents in Medicinal Chemistry