[1]
H.B. Wu, Y.L. Ke, G. Liu, Q.L. Cheng, and Y.B. Bi, "Three-dimensional numerical simulation for high speed milling of aerospace aluminum alloy", J. Zhejiang Univ. Eng. Sci.. vol. 42, pp. 234-238, Feb 2008.
[2]
B. Rao, C.R. Dandekar, and Y.C. Shin, "An experimental and numerical study on the face milling of Ti-6Al-4V alloy: Tool performance and surface integrity", J. Mater. Process. Tech.. vol. 211, pp. 294-304, Jan 2011.
[3]
R. Li, and A.J. Shih, "Finite element modeling of 3D turning of titanium", Int. J. Adv. Manuf. Technol.. vol. 29, pp. 253-261, Feb 2006
[4]
Q.Y. Zhang, M. Li, and L.C. Xi, "Milling force model and influencing factors of 6061 aluminum alloy in high-speed milling", Manuf. Tech. Mach. Tool. vol. 4, pp. 100-102, Apr 2014.
[5]
C.K. Wang, C.M. Peng, D. Lu, and X.H. Zhong, "Milling Simulation and Distortion Forecast of Aerometal 7075-T7451 Thin-walled Workpiece", Manuf. Tech. Mach. Tool. vol. 8, pp. 87-90, Aug 2010.
[6]
T. Thepsonthi, and T. Özel, "3-D finite element process simulation of micro-end milling Ti-6Al-4V titanium alloy: Experimental validations on chip flow and tool wear", J. Mater. Process. Technol.. vol. 221, pp. 128-145, Feb 2015.
[7]
Y. Yang, C.H. Li, and J. Sun, "Three-dimensional numerical simulation of cutting force during milling of titanium alloy Ti6Al4V", J. Basic Sci. Eng.. vol. 18, pp. 493-502, June 2010.
[8]
Z. S. Chen, A surface processing method for quenched steel. CN Patent 102990085A, 2013.
[9]
M. Batista, A. Morales, A. Gómez-Parra, J. Salguero, F.J. Puerta, and M. Marcos, "3D-FEM based methodology for analysing contour milling processes of Ti alloys", Prod. Eng.. vol. 132, pp. 1136- 1143, Dec 2015.
[10]
S. Kalpakjian, Manufacturing processes for engineering materials.Addison-Wesley, . 1997.
[11]
H. Qiu, X.X. Ban, L.Q. Ji, and M.Y. Wang, "Study on simulation and experiment of cutting force in high speed cutting GCr15", Modul. Mach. Tool. Autom. Manuf. Tech. vol. 4, pp. 154-157, Apr 2016.
[12]
Z.Y. Zhang, G.D. Chen, and T. Wang, "Study on the milling force and milling temperature for end milling of aluminum alloy 7055", Mach. Des. Manuf. vol. 6, pp. 75-78, June 2014.
[13]
Y. Yang, Y.L. Ke, and H.Y. Dong, "Constitutive model of aviation aluminum-alloy material in metal machining", Chin. J. Nonferrous Met.. vol. 15, pp. 854-859, June 2005.
[14]
Q.L. Cheng, Y.L. Ke, and H.Y. Dong, "“Simulation of high-speed milling process of aerospace aluminum alloy”, J. Zhejiang Uni", Eng. Sci.. vol. 40, pp. 113-117, Jan 2006.
[15]
X.L. Fu, X. Ai, Z.Q. Liu, and Y. Wan, "Study on shear angle model of aluminum alloy 7050-T7451 in high speed machining", Chin. Mech. Eng. vol. 18, pp. 220-224, Jan 2007.
[16]
Z.Y. Cao, N. He, L. Li, and W.M. Zhu, "Chip formation and its numerical simulation in high speed cutting of Ti6Al4V alloy", Chin. Mech. Eng. vol. 19, pp. 2450-2454, Oct 2008.
[17]
T. Özel, M. Sima, A.K. Srivastava, and B. Kaftanoglu, "“Investigations on the effects of multi-layered coated inserts in machining Ti-6Al-4V alloy with experiments and finite element simulations”, CIRP Ann.-", Manuf. Tech. vol. 59, pp. 77-82, June 2010.
[18]
M. Calamaz, D. Coupard, and F. Girot, "A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V", Int. J. Mach. Tools Manuf.. vol. 48, pp. 275-288, Apr 2008.
[19]
C.Y. Wang, F. Ding, D.W. Tang, L.J. Zheng, S.Y. Li, and Y.X. Xie, "Modeling and simulation of the high-speed milling of hardened steel SKD11 (62 HRC) based on SHPB technology", Int. J. Mach. Tools Manuf.. vol. 108, pp. 13-26, 2016.
[20]
G.S. Wang, B. Hou, Z.Q. Yu, and S.H. Li, "The numerical simulation for high-speed cutting of aluminum alloy based on bcj model", Mach. Des. Res. vol. 27, pp. 91-93, June 2011.
[21]
Y. H. Feng, J. L. Wan, T. Gong, C. H. Xu, H. Sun, and F. M. Li, Method of cutting hardened 45 steel with alumina based composite ceramic cutters under micro lubrication. CN Patent 104227025A, 2014.
[22]
Y.Y. Hu, S.M. Fei, M.L. Wang, J.M. Zuo, and J. Wang, "Modeling and simulation of high speed machining temperature field based on finite element analysis", J. Syst. Simu. vol. 21, pp. 7091- 7095, Nov 2009.
[23]
F.J. Zerilli, and R.W. Armstrong, "Dislocation-mechanics-based constitutive relations for material dynamics calculations", J. Appl. Phys.. vol. 61, pp. 1816-1825, Mar 1987.
[24]
Y.Q. Guo, H. Jiang, and X.C. Wang, "Research on contact friction in sheet forming numerical simulation", Chin. J. Mech. Eng.. vol. 40, pp. 174-177, June 2004.
[25]
W. Deng, "Finite element analysis of orthogonal machining high-strength wear-resisting aluminum bronze", Chin. J. Mech. Eng.. vol. 40, pp. 71-75, Feb 2004.
[26]
G. Barrow, W. Graham, T. Kurimoto, and Y.F. Leong, "Determination of rake face stress distribution in orthogonal machining", Int. J. Mach. Tool Des. Res. vol. 22, pp. 75-85, Nov 1982.
[27]
H.Y. Dong, Y.L. Ke, and Q.L. Cheng, "“Finite element simulation and analysis of aluminum alloy three-dimensional milling”, J. Zhejiang Uni", Eng. Sci.. vol. 40, pp. 759-762, May 2006.
[28]
L. Filice, F. Micari, S. Rizzuti, and D. Umbrello, "A critical analysis on the friction modeling in orthogonal machining", Int. J. Mach. Tools Manuf.. vol. 47, pp. 709-714, Mar 2007.
[29]
H. Zamani, J.P. Hermani, B. Sondereggera, and C. Sommitsch, "3D simulation and process optimization of laser assisted milling of Ti6Al4V", Pro. CIRP. vol. 8, pp. 75-80, Nov 2013.
[30]
T. Özel, "The influence of friction models on finite element simulations of machining", Int. J. Mach. Tools Manuf.. vol. 46, pp. 518- 530, May 2006.
[31]
Q.L. Liu, Machining method of support ring. CN Patent 106346223 A, 2017.
[32]
T. Özel, and T. Altan, "Determination of workpiece flow stress and friction at the chip-tool contact for high-speed cutting", Int. J. Mach. Tool Manu.. vol. 40, pp. 133-152, Jan 2000.
[33]
H.B. Wu, Z.X. Jia, G. Liu, Y.B. Bi, and H.Y. Dong, "“Finite element modeling of Ti6Al4V alloy high speed cutting”, ", J. Zhejiang Uni. ( Eng. Sci.). vol. 44, pp. 982-987, May 2010.
[34]
Z.T. Tang, Z.Q. Liu, and X. Ai, "Experimentation on the superficial residual stresses generated by high-speed milling aluminum alloy", Chin. Mech. Eng. vol. 19, pp. 699-703, Mar 2008.
[35]
G. Fang, L.P. Lei, and P. Zeng, "Criteria of metal ductile fracture and numerical simulation for metal forming", Chin. J. Mech. Eng.. vol. 38, pp. 21-25, Dec 2002.
[36]
K. Iwata, K. Osakada, and Y. Terasaka, "Process modeling of orthogonal cutting by the rigid-plastic finite element method", J. Eng. Mater. Technol.. vol. 106, pp. 132, June 1984.
[37]
N. Ahmed, A.V. Mitrofanov, V.I. Babitsky, and V.V. Silberschmidt, "3D finite element analysis of ultrasonically assisted turning", Comput. Mater. Sci.. vol. 39, pp. 149-154, Jan 2007.
[38]
M.A. Elbestawi, A.K. Srivastava, and T.I. El-Wardany, "“A model for chip formation during machining of hardened steel”, CIRP Ann.-", Manuf. Tech. vol. 45, pp. 71-76, June 1996.
[39]
Z.H. Qing, D.W. Zuo, D.H. Yang, X.B. Lei, and F. Xu, "Research on hardened 42CrMo saw-tooth chip by trial with spring type quick-stop device", Chin. Mech. Eng. vol. 27, pp. 308-314, Feb 2016.
[40]
G. Zhan, L. He, and H.W. Jiang, "Influence of fracture criterion on numerical simulation results", Modul. Mach. Tool. Autom. Manuf. Tech. vol. 4, pp. 16-20, Apr 2016.
[41]
P.A. Du, "Principle of meshing in finite element modeling", Mach. Des. Manuf. vol. 1, pp. 34-36, Feb 2000.
[42]
A.J. Shih, "Finite element analysis of orthogonal metal cutting mechanics", Int. J. Mach. Tools Manuf.. vol. 36, pp. 255-273, Feb 1996.
[43]
W.F. Noh, CEL: A Time-Dependent, Two-Space-Dimensional, Coupled Eulerian-Lagrange Code.Configuration, . 1963
[44]
J. Donea, S. Giuliani, and J.P. Halleux, "An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions", Comput. Methods Appl. Math.. vol. 33, pp. 689-723, Jan 1982.
[45]
T. Belytschko, D.P. Flanagan, and J.M. Kennedy, "Finite element methods with user-controlled meshes for fluid-structure interaction", Comput. Methods Appl. Math.. vol. 33, pp. 669-688, Jan 1982.
[46]
A. Mamedov, and I. Lazoglu, "Thermal analysis of micro milling titanium alloy Ti-6Al-4V", J. Mater. Process. Technol.. vol. 229, pp. 659-667, 2016.
[47]
M. Mahnama, and M.R. Movahhedy, "Prediction of machining chatter based on FEM simulation of chip formation under dynamic conditions", Int. J. Mach. Tools Manuf.. vol. 50, pp. 611-620, July 2010
[48]
A. Shrot, and M. Bäker, "Determination of Johnson-Cook parameters from machining simulations", Comput. Mater. Sci.. vol. 52, pp. 298-304, Jan 2012.
[49]
Y.M. Arısoy, and T. Özel, "Prediction of machining induced microstructure in Ti-6Al-4V alloy using 3-D FE-based simulations: Effects of tool micro-geometry, coating and cutting conditions", J. Mater. Process. Technol.. vol. 220, pp. 1-26, 2015.
[50]
G.G. Ye, S.F. Xue, W. Ma, M.Q. Jiang, Z. Ling, X.H. Tong, and L.H. Dai, "Cutting AISI 1045 steel at very high speeds", J. Mater. Process. Technol.. vol. 56, pp. 1-9, Jan 2012.
[51]
Z.G. Rong, L. Jiao, X.Y. He, and Y.B. Qian, "The finite element analysis and simulation of turning based on ABAQUS", Mach. Tool Hydraulics. vol. 37, pp. 233-236, May 2009.
[52]
Y. H. Feng, J. Y. Zhang, L. Wang, W. Q. Zhang, X. Kong, and Y. Tian, A method of dry cutting 45 steel with different morphologies and micro textured ceramic tools in situ formation. CN Patent 106964786A, 2017.
[53]
H.F. Wang, T. Xiao, and W.G. Wu, "Finite element simulation on cutting temperature during turning Ti-6Al-4V", Mach. Des. Manuf. vol. 9, pp. 48-50, Sept 2012.
[54]
Y. Huang, O. Di, and Y.F. Li, "Finite element simulation of turning aluminum alloy 2A12 based on Deform-3D", Machinery. vol. 54, pp. 41-43, June 2016.
[55]
Y.B. Bi, Q. Fang, H.Y. Dong, and Y.L. Ke, "Research on 3D numerical simulation and experiment of cutting temperature for high speed milling of aerospace aluminum alloy", Chin. J. Mech. Eng.. vol. 46, pp. 160-165, Apr 2010.
[56]
M.H. Wang, J.G. Wang, Y.H. Zheng, S.Y. Li, and L. Gao, "Finite element simulation and analysis of titanium alloy under high-speed milling", Mech. Sci. Tech. Aero. Eng. vol. 34, pp. 898-902, June 2015.
[57]
L.L. Zeng, L.P. Zhou, and J.Z. Zhang, "Research of new double-edged indexable ball-end mill design and machining simulation analysis", Mach. Tool Hydraulics. vol. 44, pp. 71-75, Sept 2016.
[58]
M. Nouari, G. List, F. Girot, and D. Géhin, "Effect of machining parameters and coating on wear mechanisms in dry drilling of aluminum alloys", Int. J. Mach. Tools Manuf.. vol. 45, pp. 1436-1442, Dec 2005.
[59]
M. Abouridouane, F. Klocke, and D. Lung, "Microstructure-based 3d finite element model for micro drilling carbon steels", Pro. CIRP. vol. 8, pp. 94-99, Aug 2013.
[60]
X.X. Xu, Y.X. Hu, Y.F. Sun, and Z.Q. Yao, "Finite element simulation for thin-panel drilling process with ANSYS/LS-DYNA", Mach. Des. Res. vol. 28, pp. 85-89, Feb 2012.
[61]
H.X. Zhu, X.Q. Shen, and L.X. Zhang, "The simulation of temperature field and tool wear in the near-dry deep hole drilling", Mach. Des. Manuf. vol. 2, pp. 193-195, Feb 2014.
[62]
X.M. Jia, Q.Y. Li, and H.Q. Zhang, "Experimental research and drilling simulation of small-diameter twist drill", Mach. Des. Manuf. vol. 2, pp. 139-142, Feb 2015.