[1]
Zhou, C.H.; Xia, X.; Lin, C.X.; Tong, D.S.; Beltramini, J. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev., 2011, 40(11), 5588-5617. [http://dx.doi.org/10.1039/c1cs15124j]. [PMID: 21863197].
[2]
Somerville, C.; Youngs, H.; Taylor, C.; Davis, S.C.; Long, S.P. Feedstocks for lignocellulosic biofuels. Science, 2010, 329(5993), 790-792. [http://dx.doi.org/10.1126/science.1189268]. [PMID: 20705851].
[3]
Taarning, E.; Osmundsen, C.M.; Yang, X.; Voss, B.; Andersen, S.I.; Christensen, C.H. Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy Environ. Sci., 2011, 4(3), 793-804. [http://dx.doi.org/10.1039/C004518G].
[4]
Ahn, Y.; Lee, S.H.; Kim, H.J.; Yang, Y-H.; Hong, J.H.; Kim, Y-H.; Kim, H. Electrospinning of lignocellulosic biomass using ionic liquid. Carbohydr. Polym., 2012, 88(1), 395-398. [http://dx.doi.org/10.1016/j.carbpol.2011.12.016].
[5]
Scheller, H.V.; Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol., 2010, 61, 263-289. [http://dx.doi.org/10.1146/annurev-arplant-042809-112315]. [PMID: 20192742].
[6]
Laurichesse, S.; Avérous, L. Chemical modification of lignins: Towards biobased polymers. Prog. Polym. Sci., 2014, 39(7), 1266-1290. [http://dx.doi.org/10.1016/j.progpolymsci.2013.11.004].
[7]
Isikgor, F.H.; Becer, C.R. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem., 2015, 6(25), 4497-4559. [http://dx.doi.org/10.1039/C5PY00263J].
[8]
de Souza Lima, M.M.; Borsali, R. Rodlike Cellulose Microcrystals: Structure, Properties, and Applications. Macromol. Rapid Commun., 2004, 25(7), 771-787. [http://dx.doi.org/10.1002/marc.200300268].
[9]
Kolpak, F.J.; Blackwell, J. Determination of the structure of cellulose II. Macromolecules, 1976, 9(2), 273-278. [http://dx.doi.org/10.1021/ma60050a019]. [PMID: 1263576].
[10]
Pizzi, A.; Eaton, N.J. Part 4. Crystalline Cellulose II. Journal of Macromolecular Science. Part A, 1987, 24(8), 901-918.
[11]
Zhu, H.; Luo, W.; Ciesielski, P.N.; Fang, Z.; Zhu, J.Y.; Henriksson, G.; Himmel, M.E.; Hu, L. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chem. Rev., 2016, 116(16), 9305-9374. [http://dx.doi.org/10.1021/acs.chemrev.6b00225]. [PMID: 27459699].
[12]
Medronho, B.; Lindman, B. Competing forces during cellulose dissolution: From solvents to mechanisms. Curr. Opin. Colloid Interface Sci., 2014, 19(1), 32-40. [http://dx.doi.org/10.1016/j.cocis.2013.12.001].
[13]
Giummarella, N.; Lindgren, C.; Lindstrom, M.E.; Henriksson, G. Lignin Prepared by Ultrafiltration of Black Liquor: Investigation of Solubility, Viscosity, and Ash Content. BioResources, 2016, 11(2), 3494-3510. [http://dx.doi.org/10.15376/biores.11.2.3494-3510].
[14]
Taherzadeh, M.J.; Karimi, K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci., 2008, 9(9), 1621-1651. [http://dx.doi.org/10.3390/ijms9091621]. [PMID: 19325822].
[15]
Kumar, P.; Barrett, D.M.; Delwiche, M.J.; Stroeve, P. Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Ind. Eng. Chem. Res., 2009, 48(8), 3713-3729. [http://dx.doi.org/10.1021/ie801542g].
[16]
Müller, F.A.; Müller, L.; Hofmann, I.; Greil, P.; Wenzel, M.M.; Staudenmaier, R. Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials, 2006, 27(21), 3955-3963. [http://dx.doi.org/10.1016/j.biomaterials.2006.02.031]. [PMID: 16530823].
[17]
Liuyun, J.; Yubao, L.; Chengdong, X. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering. J. Biomed. Sci., 2009, 16(1), 65. [http://dx.doi.org/10.1186/1423-0127-16-65]. [PMID: 19594953].
[18]
Crowley, M.M.; Schroeder, B.; Fredersdorf, A.; Obara, S.; Talarico, M.; Kucera, S.; McGinity, J.W. Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. Int. J. Pharm., 2004, 269(2), 509-522. [http://dx.doi.org/10.1016/j.ijpharm.2003.09.037]. [PMID: 14706261].
[19]
Mohd Amin, M.C.; Ahmad, N.; Halib, N.; Ahmad, I. Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr. Polym., 2012, 88(2), 465-473. [http://dx.doi.org/10.1016/j.carbpol.2011.12.022].
[20]
Tungprapa, S.; Jangchud, I.; Supaphol, P. Release characteristics of four model drugs from drug-loaded electrospun cellulose acetate fiber mats. Polymer (Guildf.), 2007, 48(17), 5030-5041. [http://dx.doi.org/10.1016/j.polymer.2007.06.061].
[21]
Ye, S.H.; Watanabe, J.; Iwasaki, Y.; Ishihara, K. Antifouling blood purification membrane composed of cellulose acetate and phospholipid polymer. Biomaterials, 2003, 24(23), 4143-4152. [http://dx.doi.org/10.1016/S0142-9612(03)00296-5]. [PMID: 12853244].
[22]
Ma, H.; Burger, C.; Hsiao, B.S.; Chu, B. Ultra-fine cellulose nanofibers: new nano-scale materials for water purification. J. Mater. Chem., 2011, 21(21), 7507. [http://dx.doi.org/10.1039/c0jm04308g].
[23]
Bhattacharya, M.; Malinen, M.M.; Lauren, P.; Lou, Y.R.; Kuisma, S.W.; Kanninen, L.; Lille, M.; Corlu, A. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J. Control. Release, 2012, 164(3), 291-298.
[24]
Lou, Y.R.; Kanninen, L.; Kuisma, T.; Niklander, J.; Noon, L.A.; Burks, D.; Urtti, A.; Yliperttula, M. The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells Dev., 2014, 23(4), 380-392. [http://dx.doi.org/10.1089/scd.2013.0314]. [PMID: 24188453].
[25]
Svensson, A.; Nicklasson, E.; Harrah, T.; Panilaitis, B.; Kaplan, D.L.; Brittberg, M.; Gatenholm, P. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials, 2005, 26(4), 419-431. [http://dx.doi.org/10.1016/j.biomaterials.2004.02.049]. [PMID: 15275816].
[26]
Wan, Y.Z.; Huang, Y.; Yuan, C.D.; Raman, S.; Zhu, Y.; Jiang, H.J.; He, F.; Gao, C. Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater. Sci. Eng. C, 2007, 27(4), 855-864. [http://dx.doi.org/10.1016/j.msec.2006.10.002].
[27]
Dunweg, G.; Steinfeld, L.; Ansorge, W. Dialysis membrane
made of cellulose acetate. U.S. Patent,, No. 5,403,485. 1995.
[28]
Ishihara, K.; Miyazaki, H.; Kurosaki, T.; Nakabayashi, N. Improvement of blood compatibility on cellulose dialysis membrane. III. Synthesis and performance of water-soluble cellulose grafted with phospholipid polymer as coating material on cellulose dialysis membrane. J. Biomed. Mater. Res., 1995, 29(2), 181-188. [http://dx.doi.org/10.1002/jbm.820290207]. [PMID: 7738064].
[29]
Idris, A.; Yet, L.K. The effect of different molecular weight PEG additives on cellulose acetate asymmetric dialysis membrane performance. J. Membr. Sci., 2006, 280(1), 920-927. [http://dx.doi.org/10.1016/j.memsci.2006.03.010].
[30]
Qiu, X.; Ren, X.; Hu, S. Fabrication of dual-responsive cellulose-based membrane via simplified surface-initiated ATRP. Carbohydr. Polym., 2013, 92(2), 1887-1895. [http://dx.doi.org/10.1016/j.carbpol.2012.11.080]. [PMID: 23399233].
[31]
Ma, Z.; Ramakrishna, S. Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification. J. Membr. Sci., 2008, 319(1), 23-28. [http://dx.doi.org/10.1016/j.memsci.2008.03.045].
[32]
Lin, M.; Xu, P.; Zhong, W. Preparation, characterization, and release behavior of aspirin-loaded poly(2-hydroxyethyl acrylate)/silica hydrogels. J. Biomed. Mater. Res. B Appl. Biomater., 2012, 100(4), 1114-1120. [http://dx.doi.org/10.1002/jbm.b.32678]. [PMID: 22447532].
[33]
Wei, L.; Cai, C.; Lin, J.; Chen, T. Dual-drug delivery system based on hydrogel/micelle composites. Biomaterials, 2009, 30(13), 2606-2613. [http://dx.doi.org/10.1016/j.biomaterials.2009.01.006]. [PMID: 19162320].
[34]
Wei, W.; Hu, X.; Qi, X.; Yu, H.; Liu, Y.; Li, J.; Zhang, J.; Dong, W. A novel thermo-responsive hydrogel based on salecan and poly(N-isopropylacrylamide): synthesis and characterization. Colloids Surf. B Biointerfaces, 2015, 125, 1-11. [http://dx.doi.org/10.1016/j.colsurfb.2014.10.057]. [PMID: 25460596].
[35]
Xu, Y.; Lin, Z.; Huang, X.; Liu, Y.; Huang, Y.; Duan, X. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano, 2013, 7(5), 4042-4049. [http://dx.doi.org/10.1021/nn4000836]. [PMID: 23550832].
[36]
Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M.T.; Bao, Z.; Cui, Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun., 2013, 4, 1943. [http://dx.doi.org/10.1038/ncomms2941]. [PMID: 23733138].
[37]
Abe, K.; Yano, H. Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose, 2012, 19(6), 1907-1912. [http://dx.doi.org/10.1007/s10570-012-9784-3].
[38]
Rimdusit, S.; Somsaeng, K.; Kewsuwan, P.; Jubsilp, C.; Tiptipakorn, S. Comparison of gamma radiation crosslinking and chemical crosslinking on properties of methylcellulose hydrogel. Eng. J. (N.Y.), 2012, 16(4), 15-28.
[39]
Zhao, L.; Mitomo, H. Adsorption of heavy metal ions from aqueous solution onto chitosan entrapped CM-cellulose hydrogels synthesized by irradiation. J. Appl. Polym. Sci., 2008, 110(3), 1388-1395. [http://dx.doi.org/10.1002/app.28718].
[40]
Nie, Z.; Nijhuis, C.A.; Gong, J.; Chen, X.; Kumachev, A.; Martinez, A.W.; Narovlyansky, M.; Whitesides, G.M. Electrochemical sensing in paper-based microfluidic devices. Lab Chip, 2010, 10(4), 477-483. [http://dx.doi.org/10.1039/B917150A]. [PMID: 20126688].
[41]
Kuek Lawrence, C.S.; Tan, S.N.; Floresca, C.Z.A. “green” cellulose paper based glucose amperometric biosensor. Sens. Actuators B Chem., 2014, 193, 536-541. [http://dx.doi.org/10.1016/j.snb.2013.11.054].
[42]
Schyrr, B.; Pasche, S.; Voirin, G.; Weder, C.; Simon, Y.C.; Foster, E.J. Biosensors based on porous cellulose nanocrystal-poly(vinyl alcohol) scaffolds. ACS Appl. Mater. Interfaces, 2014, 6(15), 12674-12683. [http://dx.doi.org/10.1021/am502670u]. [PMID: 24955644].
[43]
Sadasivuni, K.K.; Kafy, A.; Kim, H-C.; Ko, H-U.; Mun, S.; Kim, J. Reduced graphene oxide filled cellulose films for flexible temperature sensor application. Synth. Met., 2015, 206, 154-161. [http://dx.doi.org/10.1016/j.synthmet.2015.05.018].
[44]
Han, J-W.; Kim, B.; Li, J.; Meyyappan, M. Carbon nanotube based humidity sensor on cellulose paper. J. Phys. Chem. C, 2012, 116(41), 22094-22097. [http://dx.doi.org/10.1021/jp3080223].
[45]
Mahadeva, S.K.; Yun, S.; Kim, J. Flexible humidity and temperature sensor based on cellulose–polypyrrole nanocomposite. Sens. Actuators A Phys., 2011, 165(2), 194-199. [http://dx.doi.org/10.1016/j.sna.2010.10.018].
[46]
Maniruzzaman, M.; Jang, S-D.; Kim, J. Titanium dioxide–cellulose hybrid nanocomposite and its glucose biosensor application. Mater. Sci. Eng. B, 2012, 177(11), 844-848. [http://dx.doi.org/10.1016/j.mseb.2012.04.003].
[47]
Gírio, F.M.; Fonseca, C.; Carvalheiro, F.; Duarte, L.C.; Marques, S.; Bogel-Łukasik, R. Hemicelluloses for fuel ethanol: A review. Bioresour. Technol., 2010, 101(13), 4775-4800. [http://dx.doi.org/10.1016/j.biortech.2010.01.088]. [PMID: 20171088].
[48]
Peng, P.; She, D. Isolation, structural characterization, and potential applications of hemicelluloses from bamboo: a review. Carbohydr. Polym., 2014, 112, 701-720. [http://dx.doi.org/10.1016/j.carbpol.2014.06.068]. [PMID: 25129800].
[49]
Petzold, K.; Schwikal, K.; Heinze, T. Carboxymethyl xylan—synthesis and detailed structure characterization. Carbohydr. Polym., 2006, 64(2), 292-298. [http://dx.doi.org/10.1016/j.carbpol.2005.11.037].
[50]
Ren, J-L.; Sun, R-C.; Peng, F. Carboxymethylation of hemicelluloses isolated from sugarcane bagasse. Polym. Degrad. Stabil., 2008, 93(4), 786-793. [http://dx.doi.org/10.1016/j.polymdegradstab.2008.01.011].
[51]
Sun, X.F.; Sun, R.C.; Zhao, L.; Sun, J.X. Acetylation of sugarcane bagasse hemicelluloses under mild reaction conditions by using NBS as a catalyst. J. Appl. Polym. Sci., 2004, 92(1), 53-61. [http://dx.doi.org/10.1002/app.13636].
[52]
Ren, J.L.; Sun, R.C.; Liu, C.F.; Cao, Z.N.; Luo, W. Acetylation of wheat straw hemicelluloses in ionic liquid using iodine as a catalyst. Carbohydr. Polym., 2007, 70(4), 406-414. [http://dx.doi.org/10.1016/j.carbpol.2007.04.022].
[53]
Sun, X-F.; Sun, R-C.; Sun, J-X. Oleoylation of sugarcane bagasse hemicelluloses usingN-bromosuccinimide as a catalyst. J. Sci. Food Agric., 2004, 84(8), 800-810. [http://dx.doi.org/10.1002/jsfa.1735].
[54]
Sun, R.C.; Sun, X.F.; Bing, X. Succinoylation of wheat straw hemicelluloses with a low degree of substitution in aqueous systems. J. Appl. Polym. Sci., 2002, 83(4), 757-766. [http://dx.doi.org/10.1002/app.2270].
[55]
Ren, J.L.; Xu, F.; Sun, R.C.; Peng, B.; Sun, J.X. Studies of the lauroylation of wheat straw hemicelluloses under heating. J. Agric. Food Chem., 2008, 56(4), 1251-1258. [http://dx.doi.org/10.1021/jf072983q]. [PMID: 18237136].
[56]
Peng, X.W.; Ren, J.L.; Zhong, L.X.; Sun, R.C. Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromolecules, 2011, 12(9), 3321-3329. [http://dx.doi.org/10.1021/bm2008795]. [PMID: 21815695].
[57]
Hartman, J.; Albertsson, A.C.; Sjöberg, J. Surface- and bulk-modified galactoglucomannan hemicellulose films and film laminates for versatile oxygen barriers. Biomacromolecules, 2006, 7(6), 1983-1989. [http://dx.doi.org/10.1021/bm060129m]. [PMID: 16768423].
[58]
Gröndahl, M.; Gustafsson, A.; Gatenholm, P. Gas-phase surface fluorination of arabinoxylan films. Macromolecules, 2006, 39(7), 2718-2712. [http://dx.doi.org/10.1021/ma052066q].
[59]
Kayserilioğlu, B.S.; Bakir, U.; Yilmaz, L.; Akkaş, N. Use of xylan, an agricultural by-product, in wheat gluten based biodegradable films: mechanical, solubility and water vapor transfer rate properties. Bioresour. Technol., 2003, 87(3), 239-246. [http://dx.doi.org/10.1016/S0960-8524(02)00258-4]. [PMID: 12507862].
[60]
Zhang, P.; Whistler, R.L. Mechanical properties and water vapor permeability of thin film from corn hull arabinoxylan. J. Appl. Polym. Sci., 2004, 93(6), 2896-2902. [http://dx.doi.org/10.1002/app.20910].
[61]
Silva, A.K.; da Silva, E.L.; Oliveira, E.E.; Nagashima, T., Jr; Soares, L.A.; Medeiros, A.C.; Araújo, J.H.; Araújo, I.B.; Carriço, A.S.; Egito, E.S. Synthesis and characterization of xylan-coated magnetite microparticles. Int. J. Pharm., 2007, 334(1-2), 42-47. [http://dx.doi.org/10.1016/j.ijpharm.2006.10.019]. [PMID: 17113734].
[62]
Zhao, W.; Odelius, K.; Edlund, U.; Zhao, C.; Albertsson, A.C. In situ synthesis of magnetic field-responsive hemicellulose hydrogels for drug delivery. Biomacromolecules, 2015, 16(8), 2522-2528. [http://dx.doi.org/10.1021/acs.biomac.5b00801]. [PMID: 26196600].
[63]
Hansen, N.M.; Plackett, D. Sustainable films and coatings from hemicelluloses: A review. Biomacromolecules, 2008, 9(6), 1493-1505. [http://dx.doi.org/10.1021/bm800053z]. [PMID: 18457452].
[64]
Peng, X.W.; Ren, J.L.; Zhong, L.X.; Peng, F.; Sun, R.C. Xylan-rich hemicelluloses-graft-acrylic acid ionic hydrogels with rapid responses to pH, salt, and organic solvents. J. Agric. Food Chem., 2011, 59(15), 8208-8215. [http://dx.doi.org/10.1021/jf201589y]. [PMID: 21721522].
[65]
Peng, X.W.; Zhong, L.X.; Ren, J.L.; Sun, R.C. Highly effective adsorption of heavy metal ions from aqueous solutions by macroporous xylan-rich hemicelluloses-based hydrogel. J. Agric. Food Chem., 2012, 60(15), 3909-3916. [http://dx.doi.org/10.1021/jf300387q]. [PMID: 22468965].
[66]
Roos, A.A.; Edlund, U.; Sjöberg, J.; Albertsson, A.C.; Stålbrand, H. Protein release from galactoglucomannan hydrogels: influence of substitutions and enzymatic hydrolysis by β-mannanase. Biomacromolecules, 2008, 9(8), 2104-2110. [http://dx.doi.org/10.1021/bm701399m]. [PMID: 18590309].
[67]
Raschip, I.E.; Hitruc, E.G.; Oprea, A.M.; Popescu, M-C.; Vasile, C. In vitro evaluation of the mixed xanthan/lignin hydrogels as vanillin carriers. J. Mol. Struct., 2011, 1003(1), 67-74. [http://dx.doi.org/10.1016/j.molstruc.2011.07.023].
[68]
Ciolacu, D.; Oprea, A.M.; Anghel, N.; Cazacu, G.; Cazacu, M. New cellulose–lignin hydrogels and their application in controlled release of polyphenols. Mater. Sci. Eng. C, 2012, 32(3), 452-463. [http://dx.doi.org/10.1016/j.msec.2011.11.018].
[69]
Feng, Q.H.; Chen, F.G.; Wu, H.R. Preparation and characterization of a temperature-sensitive lignin-based hydrogel. BioResources, 2011, 6(4), 4942-4952.
[70]
Peng, Z.; Chen, F. Synthesis and properties of lignin-based polyurethane hydrogels. Int. J. Polym. Mater., 2011, 60(9), 674-683. [http://dx.doi.org/10.1080/00914037.2010.551353].
[71]
Griffith, W.L.; Compere, A.L. Separation of alcohols from solution by lignin gels. Sep. Sci. Technol., 2008, 43(9-10), 2396-2405. [http://dx.doi.org/10.1080/01496390802148571].
[72]
Wohl, B.M.; Engbersen, J.F. Responsive layer-by-layer materials for drug delivery. J. Control. Release, 2012, 158(1), 2-14.
[73]
Manchun, S.; Dass, C.R.; Sriamornsak, P. Targeted therapy for cancer using pH-responsive nanocarrier systems. Life Sci., 2012, 90(11-12), 381-387. [http://dx.doi.org/10.1016/j.lfs.2012.01.008]. [PMID: 22326503].
[74]
Felber, A.E.; Dufresne, M.H.; Leroux, J.C. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv. Drug Deliv. Rev., 2012, 64(11), 979-992. [http://dx.doi.org/10.1016/j.addr.2011.09.006]. [PMID: 21996056].
[75]
Hebeish, A.; Farag, S.; Sharaf, S.; Shaheen, T.I. Thermal responsive hydrogels based on semi interpenetrating network of poly(NIPAm) and cellulose nanowhiskers. Carbohydr. Polym., 2014, 102, 159-166. [http://dx.doi.org/10.1016/j.carbpol.2013.10.054]. [PMID: 24507268].
[76]
Buenger, D.; Topuz, F.; Groll, J. Hydrogels in sensing applications. Prog. Polym. Sci., 2012, 37(12), 1678-1719. [http://dx.doi.org/10.1016/j.progpolymsci.2012.09.001].
[77]
Islam, A.; Yasin, T.; Bano, I.; Riaz, M. Controlled release of aspirin from pH-sensitive chitosan/poly(vinyl alcohol) hydrogel. J. Appl. Polym. Sci., 2012, 124(5), 4184-4192. [http://dx.doi.org/10.1002/app.35392].
[78]
Hua, R.; Li, Z. Sulfhydryl functionalized hydrogel with magnetism: Synthesis, characterization, and adsorption behavior study for heavy metal removal. Chem. Eng. J., 2014, 249, 189-200. [http://dx.doi.org/10.1016/j.cej.2014.03.097].
[79]
Xu, F.J.; Zhu, Y.; Liu, F.S.; Nie, J.; Ma, J.; Yang, W.T. Comb-shaped conjugates comprising hydroxypropyl cellulose backbones and low-molecular-weight poly(N-isopropylacryamide) side chains for smart hydrogels: synthesis, characterization, and biomedical applications. Bioconjug. Chem., 2010, 21(3), 456-464. [http://dx.doi.org/10.1021/bc900337p]. [PMID: 20178357].
[80]
Liang, H.F.; Hong, M.H.; Ho, R.M.; Chung, C.K.; Lin, Y.H.; Chen, C.H.; Sung, H.W. Novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate as a pH-sensitive hydrogel. Biomacromolecules, 2004, 5(5), 1917-1925. [http://dx.doi.org/10.1021/bm049813w]. [PMID: 15360306].
[81]
Rodríguez, R.; Alvarez-Lorenzo, C.; Concheiro, A. Cationic cellulose hydrogels: Kinetics of the cross-linking process and characterization as pH-/ion-sensitive drug delivery systems. J. Control. Release, 2003, 86(2-3), 253-265. [http://dx.doi.org/10.1016/S0168-3659(02)00410-8]. [PMID: 12526822].
[82]
Chang, C.; He, M.; Zhou, J.; Zhang, L. Swelling behaviors of pH- and Salt-responsive Cellulose-based hydrogels. Macromolecules, 2011, 44(6), 1642-1648. [http://dx.doi.org/10.1021/ma102801f].
[83]
Wang, S.; Zhang, Q.; Tan, B.; Liu, L.; Shi, L. pH-Sensitive Poly(Vinyl Alcohol)/Sodium Carboxymethylcellulose Hydrogel Beads for Drug Delivery. J. Macromol. Sci. Part B Phys., 2011, 50(12), 2307-2317. [http://dx.doi.org/10.1080/00222348.2011.563196].
[84]
Estrada, R.; Rodríguez, R.; Castaño, V.M. Smart polymeric membranes: pH-induced non-linear changes in pore size. Appl. Phys., A Mater. Sci. Process., 2010, 99(4), 723-728. [http://dx.doi.org/10.1007/s00339-010-5554-y].
[85]
Estrada, R.F.; Rodriguez, R.; Castano, V.M. Smart polymeric membranes with adjustable pore size. Int. J. Polym. Mater., 2003, 52(9), 833-843. [http://dx.doi.org/10.1080/713743715].
[86]
Zhang, K.; Wu, X.Y. Temperature and pH-responsive polymeric composite membranes for controlled delivery of proteins and peptides. Biomaterials, 2004, 25(22), 5281-5291. [http://dx.doi.org/10.1016/j.biomaterials.2003.12.032]. [PMID: 15110479].
[87]
Atyabi, F.; Khodaverdi, E.; Dinarvand, R. Temperature modulated drug permeation through liquid crystal embedded cellulose membranes. Int. J. Pharm., 2007, 339(1-2), 213-221. [http://dx.doi.org/10.1016/j.ijpharm.2007.03.004]. [PMID: 17448615].
[88]
Suedee, R.; Jantarat, C.; Lindner, W.; Viernstein, H.; Songkro, S.; Srichana, T. Development of a pH-responsive drug delivery system for enantioselective-controlled delivery of racemic drugs. J. Control. Release, 2010, 142(1), 122-131.
[89]
Zhang, K.; Wu, X.Y. Modulated insulin permeation across a glucose-sensitive polymeric composite membrane. J. Control. Release, 2002, 80(1-3), 169-178. [http://dx.doi.org/10.1016/S0168-3659(02)00024-X]. [PMID: 11943396].
[90]
Ichikawa, H.; Fukumori, Y. A novel positively thermosensitive controlled-release microcapsule with membrane of nano-sized poly(N-isopropylacrylamide) gel dispersed in ethylcellulose matrix. J. Control. Release, 2000, 63(1-2), 107-119. [http://dx.doi.org/10.1016/S0168-3659(99)00181-9]. [PMID: 10640584].
[91]
Karewicz, A.; Zasada, K.; Szczubiałka, K.; Zapotoczny, S.; Lach, R.; Nowakowska, M. “Smart” alginate-hydroxypropylcellulose microbeads for controlled release of heparin. Int. J. Pharm., 2010, 385(1-2), 163-169. [http://dx.doi.org/10.1016/j.ijpharm.2009.10.021]. [PMID: 19840839].
[92]
Fang, A.; Cathala, B. Smart swelling biopolymer microparticles by a microfluidic approach: Synthesis, in situ encapsulation and controlled release. Colloids Surf. B Biointerfaces, 2011, 82(1), 81-86. [http://dx.doi.org/10.1016/j.colsurfb.2010.08.020]. [PMID: 20833004].