Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Prevention and Treatment for Chemotherapy-Induced Peripheral Neuropathy: Therapies Based on CIPN Mechanisms

Author(s): Lang-Yue Hu, Wen-Li Mi, Gen-Cheng Wu, Yan-Qing Wang and Qi-Liang Mao-Ying*

Volume 17, Issue 2, 2019

Page: [184 - 196] Pages: 13

DOI: 10.2174/1570159X15666170915143217

Price: $65

Abstract

Background: Chemotherapy-induced peripheral neuropathy (CIPN) is a progressive, enduring, and often irreversible adverse effect of many antineoplastic agents, among which sensory abnormities are common and the most suffering issues. The pathogenesis of CIPN has not been completely understood, and strategies for CIPN prevention and treatment are still open problems for medicine.

Objectives: The objective of this paper is to review the mechanism-based therapies against sensory abnormities in CIPN.

Methods: This is a literature review to describe the uncovered mechanisms underlying CIPN and to provide a summary of mechanism-based therapies for CIPN based on the evidence from both animal and clinical studies.

Results: An abundance of compounds has been developed to prevent or treat CIPN by blocking ion channels, targeting inflammatory cytokines and combating oxidative stress. Agents such as glutathione, mangafodipir and duloxetine are expected to be effective for CIPN intervention, while Ca/Mg infusion and venlafaxine, tricyclic antidepressants, and gabapentin display limited efficacy for preventing and alleviating CIPN. And the utilization of erythropoietin, menthol and amifostine needs to be cautious regarding to their side effects.

Conclusions: Multiple drugs have been used and studied for decades, their effect against CIPN are still controversial according to different antineoplastic agents due to the diverse manifestations among different antineoplastic agents and complex drug-drug interactions. In addition, novel therapies or drugs that have proven to be effective in animals require further investigation, and it will take time to confirm their efficacy and safety.

Keywords: Antineoplastic agents, adverse effect, CIPN, clinical outcomes, animal study, mechanism, prevention and treatment.

« Previous
Graphical Abstract

[1]
Koskinen, M.J.; Kautio, A.L.; Haanpää, M.L.; Haapasalo, H.K.; Kellokumpu-Lehtinen, P.L.; Saarto, T.; Hietaharju, A.J. Intraepidermal nerve fibre density in cancer patients receiving adjuvant chemotherapy. Anticancer Res., 2011, 31(12), 4413-4416.
[PMID: 22199308]
[2]
Butturini, E.; Carcereri de Prati, A.; Chiavegato, G.; Rigo, A.; Cavalieri, E.; Darra, E.; Mariotto, S. Mild oxidative stress induces S-glutathionylation of STAT3 and enhances chemosensitivity of tumoural cells to chemotherapeutic drugs. Free Radic. Biol. Med., 2013, 65, 1322-1330.
[http://dx.doi.org/10.1016/j.freeradbiomed. 2013.09.015] [PMID: 24095958]
[3]
Zhang, H.; Dougherty, P.M. Enhanced excitability of primary sensory neurons and altered gene expression of neuronal ion channels in dorsal root ganglion in paclitaxel-induced peripheral neuropathy. Anesthesiology, 2014, 120(6), 1463-1475.
[http://dx.doi.org/10.1097/ALN.0000000000000176] [PMID: 24534904]
[4]
Sisignano, M.; Baron, R.; Scholich, K.; Geisslinger, G. Mechanism-based treatment for chemotherapy-induced peripheral neuropathic pain. Nat. Rev. Neurol., 2014, 10(12), 694-707.
[http://dx.doi.org/10.1038/nrneurol.2014.211] [PMID: 25366108]
[5]
Makker, P.G.; Duffy, S.S.; Lees, J.G.; Perera, C.J.; Tonkin, R.S.; Butovsky, O.; Park, S.B.; Goldstein, D.; Moalem-Taylor, G. Characterisation of immune and neuroinflammatory changes associated with chemotherapy-induced peripheral neuropathy. PLoS One, 2017, 12(1), e0170814.
[http://dx.doi.org/10.1371/journal.pone. 0170814] [PMID: 28125674]
[6]
Cavaletti, G.; Cavalletti, E.; Oggioni, N.; Sottani, C.; Minoia, C.; D’Incalci, M.; Zucchetti, M.; Marmiroli, P.; Tredici, G. Distribution of paclitaxel within the nervous system of the rat after repeated intravenous administration. Neurotoxicology, 2000, 21(3), 389-393.
[PMID: 10894128]
[7]
Boyette-Davis, J.; Xin, W.; Zhang, H.; Dougherty, P.M. Intraepidermal nerve fiber loss corresponds to the development of taxol-induced hyperalgesia and can be prevented by treatment with minocycline. Pain, 2011, 152(2), 308-313.
[http://dx.doi.org/10.1016/j.pain.2010.10.030] [PMID: 21145656]
[8]
Jamieson, S.M.; Liu, J.J.; Connor, B.; Dragunow, M.; McKeage, M.J. Nucleolar enlargement, nuclear eccentricity and altered cell body immunostaining characteristics of large-sized sensory neurons following treatment of rats with paclitaxel. Neurotoxicology, 2007, 28(6), 1092-1098.
[http://dx.doi.org/10.1016/j.neuro.2007.04.009] [PMID: 17686523]
[9]
Yin, Z.S.; Zhang, H.; Bo, W.; Gao, W. Erythropoietin promotes functional recovery and enhances nerve regeneration after peripheral nerve injury in rats. Am. J. Neuroradiol., 2010, 31(3), 509-515.
[http://dx.doi.org/10.3174/ajnr.A1820] [PMID: 20037135]
[10]
Kassem, L.A.; Yassin, N.A. Role of erythropoeitin in prevention of chemotherapy-induced peripheral neuropathy. Pak. J. Biol. Sci., 2010, 13(12), 577-587.
[http://dx.doi.org/10.3923/pjbs.2010.577. 587] [PMID: 21061908]
[11]
Cervellini, I.; Bello, E.; Frapolli, R.; Porretta-Serapiglia, C.; Oggioni, N.; Canta, A.; Lombardi, R.; Camozzi, F.; Roglio, I.; Melcangi, R.C.; D’incalci, M.; Lauria, G.; Ghezzi, P.; Cavaletti, G.; Bianchi, R. The neuroprotective effect of erythropoietin in docetaxel-induced peripheral neuropathy causes no reduction of antitumor activity in 13762 adenocarcinoma-bearing rats. Neurotox. Res., 2010, 18(2), 151-160.
[http://dx.doi.org/10.1007/s12640-009-9127-9] [PMID: 19876698]
[12]
Bianchi, R.; Brines, M.; Lauria, G.; Savino, C.; Gilardini, A.; Nicolini, G.; Rodriguez-Menendez, V.; Oggioni, N.; Canta, A.; Penza, P.; Lombardi, R.; Minoia, C.; Ronchi, A.; Cerami, A.; Ghezzi, P.; Cavaletti, G. Protective effect of erythropoietin and its carbamylated derivative in experimental Cisplatin peripheral neurotoxicity. Clin. Cancer Res., 2006, 12(8), 2607-2612.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2177] [PMID: 16638873]
[13]
Bianchi, R.; Gilardini, A.; Rodriguez-Menendez, V.; Oggioni, N.; Canta, A.; Colombo, T.; De Michele, G.; Martone, S.; Sfacteria, A.; Piedemonte, G.; Grasso, G.; Beccaglia, P.; Ghezzi, P.; D’Incalci, M.; Lauria, G.; Cavaletti, G. Cisplatin-induced peripheral neuropathy: neuroprotection by erythropoietin without affecting tumour growth. Eur. J. Cancer, 2007, 43(4), 710-717.
[http://dx.doi.org/10. 1016/j.ejca.2006.09.028] [PMID: 17251006]
[14]
Weber, B.; Largillier, R.; Ray-Coquard, I.; Yazbek, G.; Meunier, J.; Alexandre, J.; Dauba, J.; Spaeth, D.; Delva, R.; Joly, F.; Pujade-Lauraine, E.; Copel, L. A potentially neuroprotective role for erythropoietin with paclitaxel treatment in ovarian cancer patients: a prospective phase II GINECO trial. Support. Care Cancer, 2013, 21(7), 1947-1954.
[http://dx.doi.org/10.1007/s00520-013-1748-0] [PMID: 23420555]
[15]
Thomaidis, T.; Weinmann, A.; Sprinzl, M.; Kanzler, S.; Raedle, J.; Ebert, M.; Schimanski, C.C.; Galle, P.R.; Hoehler, T.; Moehler, M. Erythropoietin treatment in chemotherapy-induced anemia in previously untreated advanced esophagogastric cancer patients. Int. J. Clin. Oncol., 2014, 19(2), 288-296.
[http://dx.doi.org/10.1007/s10147-013-0544-7] [PMID: 23532629]
[16]
Pradeep, S.; Huang, J.; Mora, E.M.; Nick, A.M.; Cho, M.S.; Wu, S.Y.; Noh, K.; Pecot, C.V.; Rupaimoole, R.; Stein, M.A.; Brock, S.; Wen, Y.; Xiong, C.; Gharpure, K.; Hansen, J.M.; Nagaraja, A.S.; Previs, R.A.; Vivas-Mejia, P.; Han, H.D.; Hu, W.; Mangala, L.S.; Zand, B.; Stagg, L.J.; Ladbury, J.E.; Ozpolat, B.; Alpay, S.N.; Nishimura, M.; Stone, R.L.; Matsuo, K.; Armaiz-Peña, G.N.; Dalton, H.J.; Danes, C.; Goodman, B.; Rodriguez-Aguayo, C.; Kruger, C.; Schneider, A.; Haghpeykar, S.; Jaladurgam, P.; Hung, M.C.; Coleman, R.L.; Liu, J.; Li, C.; Urbauer, D.; Lopez-Berestein, G.; Jackson, D.B.; Sood, A.K. Erythropoietin stimulates tumor Growth via EphB4. Cancer Cell, 2015, 28(5), 610-622.
[http://dx.doi.org/10.1016/j.ccell.2015.09.008] [PMID: 26481148]
[17]
Sharma, S.; Raghuvanshi, B.P.; Shukla, S. Toxic effects of lead exposure in rats: involvement of oxidative stress, genotoxic effect, and the beneficial role of N-acetylcysteine supplemented with selenium. J. Environ. Pathol. Toxicol. Oncol., 2014, 33(1), 19-32.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2014009712] [PMID: 24579807]
[18]
Park, I.H.; Kim, M.K.; Kim, S.U. Ursodeoxycholic acid prevents apoptosis of mouse sensory neurons induced by cisplatin by reducing P53 accumulation. Biochem. Biophys. Res. Commun., 2008, 377(4), 1025-1030.
[http://dx.doi.org/10.1016/j.bbrc.2008.06.014] [PMID: 18558085]
[19]
Park, S.A.; Choi, K.S.; Bang, J.H.; Huh, K.; Kim, S.U. Cisplatin-induced apoptotic cell death in mouse hybrid neurons is blocked by antioxidants through suppression of cisplatin-mediated accumulation of p53 but not of Fas/Fas ligand. J. Neurochem., 2000, 75(3), 946-953.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0750946.x] [PMID: 10936175]
[20]
Bragado, P.; Armesilla, A.; Silva, A.; Porras, A. Apoptosis by cisplatin requires p53 mediated p38alpha MAPK activation through ROS generation. Apoptosis, 2007, 12(9), 1733-1742.
[http://dx.doi.org/10.1007/s10495-007-0082-8] [PMID: 17505786]
[21]
Cascinu, S.; Catalano, V.; Cordella, L.; Labianca, R.; Giordani, P.; Baldelli, A.M.; Beretta, G.D.; Ubiali, E.; Catalano, G. Neuroprotective effect of reduced glutathione on oxaliplatin-based chemotherapy in advanced colorectal cancer: a randomized, double-blind, placebo-controlled trial. J. Clin. Oncol., 2002, 20(16), 3478-3483.
[http://dx.doi.org/10.1200/JCO.2002.07.061] [PMID: 12177109]
[22]
Carozzi, V.A.; Renn, C.L.; Bardini, M.; Fazio, G.; Chiorazzi, A.; Meregalli, C.; Oggioni, N.; Shanks, K.; Quartu, M.; Serra, M.P.; Sala, B.; Cavaletti, G.; Dorsey, S.G. Bortezomib-induced painful peripheral neuropathy: an electrophysiological, behavioral, morphological and mechanistic study in the mouse. PLoS One, 2013, 8(9), e72995.
[http://dx.doi.org/10.1371/journal.pone.0072995] [PMID: 24069168]
[23]
Kawakami, K.; Chiba, T.; Katagiri, N.; Saduka, M.; Abe, K.; Utsunomiya, I.; Hama, T.; Taguchi, K. Paclitaxel increases high voltage-dependent calcium channel current in dorsal root ganglion neurons of the rat. J. Pharmacol. Sci., 2012, 120(3), 187-195.
[http://dx.doi.org/10.1254/jphs.12123FP] [PMID: 23090716]
[24]
Kagiava, A.; Tsingotjidou, A.; Emmanouilides, C.; Theophilidis, G. The effects of oxaliplatin, an anticancer drug, on potassium channels of the peripheral myelinated nerve fibres of the adult rat. Neurotoxicology, 2008, 29(6), 1100-1106.
[http://dx.doi.org/10. 1016/j.neuro.2008.09.005] [PMID: 18845186]
[25]
Adelsberger, H.; Quasthoff, S.; Grosskreutz, J.; Lepier, A.; Eckel, F.; Lersch, C. The chemotherapeutic oxaliplatin alters voltage-gated Na(+) channel kinetics on rat sensory neurons. Eur. J. Pharmacol., 2000, 406(1), 25-32.
[http://dx.doi.org/10.1016/S0014-2999(00)00667-1] [PMID: 11011028]
[26]
Anand, U.; Otto, W.R.; Anand, P. Sensitization of capsaicin and icilin responses in oxaliplatin treated adult rat DRG neurons. Mol. Pain, 2010, 6, 82.
[http://dx.doi.org/10.1186/1744-8069-6-82] [PMID: 21106058]
[27]
Nassini, R.; Gees, M.; Harrison, S.; De Siena, G.; Materazzi, S.; Moretto, N.; Failli, P.; Preti, D.; Marchetti, N.; Cavazzini, A.; Mancini, F.; Pedretti, P.; Nilius, B.; Patacchini, R.; Geppetti, P. Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain, 2011, 152(7), 1621-1631.
[http://dx.doi.org/10.1016/j.pain.2011.02.051] [PMID: 21481532]
[28]
Sittl, R.; Lampert, A.; Huth, T.; Schuy, E.T.; Link, A.S.; Fleckenstein, J.; Alzheimer, C.; Grafe, P.; Carr, R.W. Anticancer drug oxaliplatin induces acute cooling-aggravated neuropathy via sodium channel subtype Na(V)1.6-resurgent and persistent current. Proc. Natl. Acad. Sci. USA, 2012, 109(17), 6704-6709.
[http://dx.doi.org/ 10.1073/pnas.1118058109] [PMID: 22493249]
[29]
Ta, L.E.; Bieber, A.J.; Carlton, S.M.; Loprinzi, C.L.; Low, P.A.; Windebank, A.J. Transient Receptor Potential Vanilloid 1 is essential for cisplatin-induced heat hyperalgesia in mice. Mol. Pain, 2010, 6, 15.
[http://dx.doi.org/10.1186/1744-8069-6-15] [PMID: 20205720]
[30]
Flatters, S.J.; Bennett, G.J. Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain, 2004, 109(1-2), 150-161.
[http://dx.doi.org/10.1016/j.pain.2004.01.029] [PMID: 15082137]
[31]
Alessandri-Haber, N.; Dina, O.A.; Yeh, J.J.; Parada, C.A.; Reichling, D.B.; Levine, J.D. Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J. Neurosci., 2004, 24(18), 4444-4452.
[http://dx.doi.org/10.1523/JNEUROSCI.0242-04.2004] [PMID: 15128858]
[32]
Egashira, N.; Hirakawa, S.; Kawashiri, T.; Yano, T.; Ikesue, H.; Oishi, R. Mexiletine reverses oxaliplatin-induced neuropathic pain in rats. J. Pharmacol. Sci., 2010, 112(4), 473-476.
[http://dx.doi.org/10.1254/jphs.10012SC] [PMID: 20308797]
[33]
Kamei, J.; Nozaki, C.; Saitoh, A. Effect of mexiletine on vincristine-induced painful neuropathy in mice. Eur. J. Pharmacol., 2006, 536(1-2), 123-127.
[http://dx.doi.org/10.1016/j.ejphar.2006.02.033] [PMID: 16556439]
[34]
Ling, B.; Authier, N.; Balayssac, D.; Eschalier, A.; Coudore, F. Behavioral and pharmacological description of oxaliplatin-induced painful neuropathy in rat. Pain, 2007, 128(3), 225-234.
[http://dx.doi.org/10.1016/j.pain.2006.09.016] [PMID: 17084975]
[35]
van den Heuvel, S.A.S.; van der Wal, S.E.I.; Smedes, L.A.; Radema, S.A.; van Alfen, N.; Vissers, K.C.P.; Steegers, M.A.H. Intravenous lidocaine: Old-school drug, new purposer of intractable Pain in Patients with chemotherapy Induced Peripheral Neuropathy. Pain Res. Manag., 2017, 2017, 8053474.
[PMID: 28458593]
[36]
Kanai, A.; Segawa, Y.; Okamoto, T.; Koto, M.; Okamoto, H. The analgesic effect of a metered-dose 8% lidocaine pump spray in posttraumatic peripheral neuropathy: a pilot study. Anesth. Analg., 2009, 108(3), 987-991.
[http://dx.doi.org/10.1213/ane.0b013 e31819431aa] [PMID: 19224814]
[37]
Navez, M.L.; Monella, C.; Bösl, I.; Sommer, D.; Delorme, C. 5% Lidocaine medicated plaster for the treatment of postherpetic neuralgia: A review of the clinical safety and tolerability. Pain Ther., 2015, 4(1), 1-15.
[http://dx.doi.org/10.1007/s40122-015-0034-x] [PMID: 25896574]
[38]
Wolff, R.F.; Bala, M.M.; Westwood, M.; Kessels, A.G.; Kleijnen, J. 5% lidocaine medicated plaster in painful diabetic peripheral neuropathy (DPN): a systematic review. Swiss Med. Wkly., 2010, 140(21-22), 297-306.
[PMID: 20458651]
[39]
Shamban, A. Safety and efficacy of facial rejuvenation with small gel particle hyaluronic acid with lidocaine and abobotulinumtoxinA in Post-chemotherapy patients: A Phase IV investigator-initiated Study. J. Clin. Aesthet. Dermatol., 2014, 7(1), 31-36.
[PMID: 24563694]
[40]
Yamaoka, K.; Vogel, S.M.; Seyama, I. Na+ channel pharmacology and molecular mechanisms of gating. Curr. Pharm. Des., 2006, 12(4), 429-442.
[http://dx.doi.org/10.2174/138161206775474468] [PMID: 16472137]
[41]
Armstrong, C.M.; Cota, G. Calcium block of Na+ channels and its effect on closing rate. Proc. Natl. Acad. Sci. USA, 1999, 96(7), 4154-4157.
[http://dx.doi.org/10.1073/pnas.96.7.4154] [PMID: 10097179]
[42]
Knijn, N.; Tol, J.; Koopman, M.; Werter, M.J.; Imholz, A.L.; Valster, F.A.; Mol, L.; Vincent, A.D.; Teerenstra, S.; Punt, C.J. The effect of prophylactic calcium and magnesium infusions on the incidence of neurotoxicity and clinical outcome of oxaliplatin-based systemic treatment in advanced colorectal cancer patients. Eur. J. Cancer, 2011, 47(3), 369-374.
[http://dx.doi.org/10.1016/j.ejca. 2010.10.006] [PMID: 21067912]
[43]
Grothey, A.; Nikcevich, D.A.; Sloan, J.A.; Kugler, J.W.; Silberstein, P.T.; Dentchev, T.; Wender, D.B.; Novotny, P.J.; Chitaley, U.; Alberts, S.R.; Loprinzi, C.L. Intravenous calcium and magnesium for oxaliplatin-induced sensory neurotoxicity in adjuvant colon cancer: NCCTG N04C7. J. Clin. Oncol., 2011, 29(4), 421-427.
[http://dx.doi.org/10.1200/JCO.2010.31.5911] [PMID: 21189381]
[44]
Loprinzi, C.L.; Qin, R.; Dakhil, S.R.; Fehrenbacher, L.; Flynn, K.A.; Atherton, P.; Seisler, D.; Qamar, R.; Lewis, G.C.; Grothey, A. Phase III randomized, placebo-controlled, double-blind study of intravenous calcium and magnesium to prevent oxaliplatin-induced sensory neurotoxicity (N08CB/Alliance). J. Clin. Oncol., 2014, 32(10), 997-1005.
[http://dx.doi.org/10.1200/JCO.2013.52.0536] [PMID: 24297951]
[45]
Han, C.H.; Khwaounjoo, P.; Kilfoyle, D.H.; Hill, A.; McKeage, M.J. Phase I drug-interaction study of effects of calcium and magnesium infusions on oxaliplatin pharmacokinetics and acute neurotoxicity in colorectal cancer patients. BMC Cancer, 2013, 13, 495.
[http://dx.doi.org/10.1186/1471-2407-13-495] [PMID: 24156389]
[46]
Ao, R.; Wang, Y.H.; Li, R.W.; Wang, Z.R. Effects of calcium and magnesium on acute and chronic neurotoxicity caused by oxaliplatin: A meta-analysis. Exp. Ther. Med., 2012, 4(5), 933-937.
[http://dx.doi.org/10.3892/etm.2012.678] [PMID: 23226752]
[47]
Bauer, C.S.; Nieto-Rostro, M.; Rahman, W.; Tran-Van-Minh, A.; Ferron, L.; Douglas, L.; Kadurin, I.; Sri Ranjan, Y.; Fernandez-Alacid, L.; Millar, N.S.; Dickenson, A.H.; Lujan, R.; Dolphin, A.C. The increased trafficking of the calcium channel subunit alpha2delta-1 to presynaptic terminals in neuropathic pain is inhibited by the alpha2delta ligand pregabalin. J. Neurosci., 2009, 29(13), 4076-4088.
[http://dx.doi.org/10.1523/JNEUROSCI.0356-09.2009] [PMID: 19339603]
[48]
Bauer, C.S.; Rahman, W.; Tran-van-Minh, A.; Lujan, R.; Dickenson, A.H.; Dolphin, A.C. The anti-allodynic alpha(2)delta ligand pregabalin inhibits the trafficking of the calcium channel alpha(2)delta-1 subunit to presynaptic terminals in vivo. Biochem. Soc. Trans., 2010, 38(2), 525-528.
[http://dx.doi.org/10.1042/BST0380525] [PMID: 20298215]
[49]
Kukkar, A.; Bali, A.; Singh, N.; Jaggi, A.S. Implications and mechanism of action of gabapentin in neuropathic pain. Arch. Pharm. Res., 2013, 36(3), 237-251.
[http://dx.doi.org/10.1007/s12272-013-0057-y] [PMID: 23435945]
[50]
Piccolo, J.; Kolesar, J.M. Prevention and treatment of chemotherapy-induced peripheral neuropathy. Am. J. Health Syst. Pharm., 2014, 71(1), 19-25.
[http://dx.doi.org/10.2146/ajhp130126] [PMID: 24352178]
[51]
Peng, P.; Xi, Q.; Xia, S.; Zhuang, L.; Gui, Q.; Chen, Y.; Huang, Y.; Zou, M.; Rao, J.; Yu, S. Pregabalin attenuates docetaxel-induced neuropathy in rats. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2012, 32(4), 586-590.
[http://dx.doi.org/10.1007/s11596-012-1001-y] [PMID: 22886975]
[52]
Gauchan, P.; Andoh, T.; Ikeda, K.; Fujita, M.; Sasaki, A.; Kato, A.; Kuraishi, Y. Mechanical allodynia induced by paclitaxel, oxaliplatin and vincristine: different effectiveness of gabapentin and different expression of voltage-dependent calcium channel alpha(2)delta-1 subunit. Biol. Pharm. Bull., 2009, 32(4), 732-734.
[http://dx.doi.org/10.1248/bpb.32.732] [PMID: 19336915]
[53]
Rao, R.D.; Michalak, J.C.; Sloan, J.A.; Loprinzi, C.L.; Soori, G.S.; Nikcevich, D.A.; Warner, D.O.; Novotny, P.; Kutteh, L.A.; Wong, G.Y. Efficacy of gabapentin in the management of chemotherapy-induced peripheral neuropathy: a phase 3 randomized, double-blind, placebo-controlled, crossover trial (N00C3). Cancer, 2007, 110(9), 2110-2118.
[http://dx.doi.org/10.1002/cncr.23008] [PMID: 17853395]
[54]
Saif, M.W.; Hashmi, S. Successful amelioration of oxaliplatin-induced hyperexcitability syndrome with the antiepileptic pregabalin in a patient with pancreatic cancer. Cancer Chemother. Pharmacol., 2008, 61(3), 349-354.
[http://dx.doi.org/10.1007/s00280-007-0584-7] [PMID: 17849118]
[55]
Saif, M.W.; Syrigos, K.; Kaley, K.; Isufi, I. Role of pregabalin in treatment of oxaliplatin-induced sensory neuropathy. Anticancer Res., 2010, 30(7), 2927-2933.
[PMID: 20683034]
[56]
Takenaka, M.; Iida, H.; Matsumoto, S.; Yamaguchi, S.; Yoshimura, N.; Miyamoto, M. Successful treatment by adding duloxetine to pregabalin for peripheral neuropathy induced by paclitaxel. Am. J. Hosp. Palliat. Care, 2013, 30(7), 734-736.
[http://dx.doi.org/10. 1177/1049909112463416] [PMID: 23064035]
[57]
de Andrade, D.C.; Jacobsen, T.M.; Galhardoni, R.; Ferreira, K.S.L.; Braz Mileno, P.; Scisci, N.; Zandonai, A.; Teixeira, W.G.J.; Saragiotto, D.F.; Silva, V.; Raicher, I.; Cury, R.G.; Macarenco, R.; Otto, H.C.; Wilson Iervolino, B.M.; Andrade de Mello, A.; Zini Megale, M.; Henrique Curti Dourado, L.; Mendes, B.L.; Lilian, R.A.; Parravano, D.; Tizue, F.J.; Lefaucheur, J.P.; Bouhassira, D.; Sobroza, E.; Richelmann, R.P.; Hoff, P.M. PreOx, W.; Valerio da Silva, F.; Chile, T.; Dale, C.S.; Nebuloni, D.; Senna, L.; Brentani, H.; Pagano, R.L.; de Souza, A.M. Pregabalin for the prevention of oxaliplatin-induced painful neuropathy: A randomized, double-blind trial. Oncologist, 2017.
[http://dx.doi.org/10.1634/theoncologist. 2017-0235]
[58]
Xing, H.; Chen, M.; Ling, J.; Tan, W.; Gu, J.G. TRPM8 mechanism of cold allodynia after chronic nerve injury. J. Neurosci., 2007, 27(50), 13680-13690.
[http://dx.doi.org/10.1523/JNEUROSCI.2203-07.2007] [PMID: 18077679]
[59]
Proudfoot, C.J.; Garry, E.M.; Cottrell, D.F.; Rosie, R.; Anderson, H.; Robertson, D.C.; Fleetwood-Walker, S.M.; Mitchell, R. Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr. Biol., 2006, 16(16), 1591-1605.
[http://dx.doi.org/10. 1016/j.cub.2006.07.061] [PMID: 16920620]
[60]
Knowlton, W.M.; Palkar, R.; Lippoldt, E.K.; McCoy, D.D.; Baluch, F.; Chen, J.; McKemy, D.D. A sensory-labeled line for cold: TRPM8-expressing sensory neurons define the cellular basis for cold, cold pain, and cooling-mediated analgesia. J. Neurosci., 2013, 33(7), 2837-2848.
[http://dx.doi.org/10.1523/JNEUROSCI. 1943-12.2013] [PMID: 23407943]
[61]
Wasner, G.; Naleschinski, D.; Binder, A.; Schattschneider, J.; McLachlan, E.M.; Baron, R. The effect of menthol on cold allodynia in patients with neuropathic pain. Pain Med., 2008, 9(3), 354-358.
[http://dx.doi.org/10.1111/j.1526-4637.2007.00290.x] [PMID: 18366513]
[62]
Liu, B.; Fan, L.; Balakrishna, S.; Sui, A.; Morris, J.B.; Jordt, S-E. TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain. Pain, 2013, 154(10), 2169-2177.
[http://dx.doi.org/10.1016/j.pain.2013.06.043] [PMID: 23820004]
[63]
Fallon, M.T.; Storey, D.J.; Krishan, A.; Weir, C.J.; Mitchell, R.; Fleetwood-Walker, S.M.; Scott, A.C.; Colvin, L.A. Cancer treatment-related neuropathic pain: proof of concept study with menthol--a TRPM8 agonist. Support. Care Cancer, 2015, 23(9), 2769-2777.
[http://dx.doi.org/10.1007/s00520-015-2642-8] [PMID: 25680765]
[64]
Colvin, L.A.; Johnson, P.R.; Mitchell, R.; Fleetwood-Walker, S.M.; Fallon, M. From bench to bedside: a case of rapid reversal of bortezomib-induced neuropathic pain by the TRPM8 activator, menthol. J. Clin. Oncol., 2008, 26(27), 4519-4520.
[http://dx.doi.org/ 10.1200/JCO.2008.18.5017] [PMID: 18802169]
[65]
Mahn, F.; Hüllemann, P.; Wasner, G.; Baron, R.; Binder, A. Topical high-concentration menthol: reproducibility of a human surrogate pain model. Eur. J. Pain, 2014, 18(9), 1248-1258.
[http://dx.doi.org/10.1002/j.1532-2149.2014.484.x] [PMID: 24777959]
[66]
Diezi, M.; Buclin, T.; Kuntzer, T. Toxic and drug-induced peripheral neuropathies: updates on causes, mechanisms and management. Curr. Opin. Neurol., 2013, 26(5), 481-488.
[http://dx.doi.org/10.1097/WCO.0b013e328364eb07] [PMID: 23995278]
[67]
Kawasaki, Y.; Xu, Z.Z.; Wang, X.; Park, J.Y.; Zhuang, Z.Y.; Tan, P.H.; Gao, Y.J.; Roy, K.; Corfas, G.; Lo, E.H.; Ji, R.R. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat. Med., 2008, 14(3), 331-336.
[http://dx.doi.org/10.1038/nm1723] [PMID: 18264108]
[68]
Wang, X.M.; Lehky, T.J.; Brell, J.M.; Dorsey, S.G. Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine, 2012, 59(1), 3-9.
[http://dx.doi.org/10.1016/j.cyto.2012.03.027] [PMID: 22537849]
[69]
Schäfers, M.; Sorkin, L. Effect of cytokines on neuronal excitability. Neurosci. Lett., 2008, 437(3), 188-193.
[http://dx.doi.org/10. 1016/j.neulet.2008.03.052] [PMID: 18420346]
[70]
Nakahashi, Y.; Kamiya, Y.; Funakoshi, K.; Miyazaki, T.; Uchimoto, K.; Tojo, K.; Ogawa, K.; Fukuoka, T.; Goto, T. Role of nerve growth factor-tyrosine kinase receptor A signaling in paclitaxel-induced peripheral neuropathy in rats. Biochem. Biophys. Res. Commun., 2014, 444(3), 415-419.
[http://dx.doi.org/10.1016/j.bbrc. 2014.01.082] [PMID: 24480438]
[71]
Alé, A.; Bruna, J.; Morell, M.; van de Velde, H.; Monbaliu, J.; Navarro, X.; Udina, E. Treatment with anti-TNF alpha protects against the neuropathy induced by the proteasome inhibitor bortezomib in a mouse model. Exp. Neurol., 2014, 253, 165-173.
[http://dx.doi.org/10.1016/j.expneurol.2013.12.020] [PMID: 24406455]
[72]
Pevida, M.; Lastra, A.; Hidalgo, A.; Baamonde, A.; Menéndez, L. Spinal CCL2 and microglial activation are involved in paclitaxel-evoked cold hyperalgesia. Brain Res. Bull., 2013, 95, 21-27.
[http://dx.doi.org/10.1016/j.brainresbull.2013.03.005] [PMID: 23562605]
[73]
Ledeboer, A.; Jekich, B.M.; Sloane, E.M.; Mahoney, J.H.; Langer, S.J.; Milligan, E.D.; Martin, D.; Maier, S.F.; Johnson, K.W.; Leinwand, L.A.; Chavez, R.A.; Watkins, L.R. Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats. Brain Behav. Immun., 2007, 21(5), 686-698.
[http://dx.doi.org/ 10.1016/j.bbi.2006.10.012] [PMID: 17174526]
[74]
Huang, Z.Z.; Li, D.; Liu, C.C.; Cui, Y.; Zhu, H.Q.; Zhang, W.W.; Li, Y.Y.; Xin, W.J. CX3CL1-mediated macrophage activation contributed to paclitaxel-induced DRG neuronal apoptosis and painful peripheral neuropathy. Brain Behav. Immun., 2014, 40, 155-165.
[http://dx.doi.org/10.1016/j.bbi.2014.03.014] [PMID: 24681252]
[75]
Kiya, T.; Kawamata, T.; Namiki, A.; Yamakage, M. Role of satellite cell-derived L-serine in the dorsal root ganglion in paclitaxel-induced painful peripheral neuropathy. Neuroscience, 2011, 174, 190-199.
[http://dx.doi.org/10.1016/j.neuroscience.2010.11.046] [PMID: 21118710]
[76]
Peters, C.M.; Jimenez-Andrade, J.M.; Jonas, B.M.; Sevcik, M.A.; Koewler, N.J.; Ghilardi, J.R.; Wong, G.Y.; Mantyh, P.W. Intravenous paclitaxel administration in the rat induces a peripheral sensory neuropathy characterized by macrophage infiltration and injury to sensory neurons and their supporting cells. Exp. Neurol., 2007, 203(1), 42-54.
[http://dx.doi.org/10.1016/j.expneurol.2006. 07.022] [PMID: 17005179]
[77]
Watanabe, T.; Nagase, K.; Chosa, M.; Tobinai, K. Schwann cell autophagy induced by SAHA, 17-AAG, or clonazepam can reduce bortezomib-induced peripheral neuropathy. Br. J. Cancer, 2010, 103(10), 1580-1587.
[http://dx.doi.org/10.1038/sj.bjc.6605954] [PMID: 20959823]
[78]
Zheng, H.; Xiao, W.H.; Bennett, G.J. Mitotoxicity and bortezomib-induced chronic painful peripheral neuropathy. Exp. Neurol., 2012, 238(2), 225-234.
[http://dx.doi.org/10.1016/j.expneurol.2012.08. 023] [PMID: 22947198]
[79]
Mao-Ying, Q.L.; Kavelaars, A.; Krukowski, K.; Huo, X.J.; Zhou, W.; Price, T.J.; Cleeland, C.; Heijnen, C.J. The anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model. PLoS One, 2014, 9(6), e100701.
[http://dx.doi.org/10.1371/journal.pone.0100701] [PMID: 24955774]
[80]
Melemedjian, O.K.; Yassine, H.N.; Shy, A.; Price, T.J. Proteomic and functional annotation analysis of injured peripheral nerves reveals ApoE as a protein upregulated by injury that is modulated by metformin treatment. Mol. Pain, 2013, 9, 14.
[http://dx.doi.org/ 10.1186/1744-8069-9-14] [PMID: 23531341]
[81]
Taylor, A.; Westveld, A.H.; Szkudlinska, M.; Guruguri, P.; Annabi, E.; Patwardhan, A.; Price, T.J.; Yassine, H.N. The use of metformin is associated with decreased lumbar radiculopathy pain. J. Pain Res., 2013, 6, 755-763.
[PMID: 24357937]
[82]
Huang, N.L.; Chiang, S.H.; Hsueh, C.H.; Liang, Y.J.; Chen, Y.J.; Lai, L.P. Metformin inhibits TNF-alpha-induced IkappaB kinase phosphorylation, IkappaB-alpha degradation and IL-6 production in endothelial cells through PI3K-dependent AMPK phosphorylation. Int. J. Cardiol., 2009, 134(2), 169-175.
[http://dx.doi.org/ 10.1016/j.ijcard.2008.04.010] [PMID: 18597869]
[83]
van Berlo-van de Laar, I.R.; Vermeij, C.G.; Doorenbos, C.J. Metformin associated lactic acidosis: incidence and clinical correlation with metformin serum concentration measurements. J. Clin. Pharm. Ther., 2011, 36(3), 376-382.
[http://dx.doi.org/10.1111/j. 1365-2710.2010.01192.x] [PMID: 21545617]
[84]
Saadi, T.; Waterman, M.; Yassin, H.; Baruch, Y. Metformin-induced mixed hepatocellular and cholestatic hepatic injury: case report and literature review. Int. J. Gen. Med., 2013, 6, 703-706.
[http://dx.doi.org/10.2147/IJGM.S49657] [PMID: 23983487]
[85]
Huang, C.Y.; Chen, Y.L.; Li, A.H.; Lu, J.C.; Wang, H.L. Minocycline, a microglial inhibitor, blocks spinal CCL2-induced heat hyperalgesia and augmentation of glutamatergic transmission in substantia gelatinosa neurons. J. Neuroinflammation, 2014, 11, 7.
[http://dx.doi.org/10.1186/1742-2094-11-7] [PMID: 24405660]
[86]
Raghavendra, V.; Tanga, F.; DeLeo, J.A. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J. Pharmacol. Exp. Ther., 2003, 306(2), 624-630.
[http://dx.doi.org/10.1124/jpet.103.052407] [PMID: 12734393]
[87]
Boyette-Davis, J.; Dougherty, P.M. Protection against oxaliplatin-induced mechanical hyperalgesia and intraepidermal nerve fiber loss by minocycline. Exp. Neurol., 2011, 229(2), 353-357.
[http://dx.doi.org/10.1016/j.expneurol.2011.02.019] [PMID: 21385581]
[88]
Pachman, D.R.; Dockter, T.; Zekan, P.J.; Fruth, B.; Ruddy, K.J.; Ta, L.E.; Lafky, J.M.; Dentchev, T.; Le-Lindqwister, N.A.; Sikov, W.M.; Staff, N.; Beutler, A.S.; Loprinzi, C.L. A pilot study of minocycline for the prevention of paclitaxel-associated neuropathy: ACCRU study RU221408I. Support. Care Cancer, 2017, 25(11), 3407-3416.
[http://dx.doi.org/10.1007/s00520-017-3760-2] [PMID: 28551844]
[89]
Ledeboer, A.; Sloane, E.M.; Milligan, E.D.; Frank, M.G.; Mahony, J.H.; Maier, S.F.; Watkins, L.R. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain, 2005, 115(1-2), 71-83.
[http://dx.doi.org/10.1016/j.pain.2005.02.009] [PMID: 15836971]
[90]
Kelly, K.J.; Sutton, T.A.; Weathered, N.; Ray, N.; Caldwell, E.J.; Plotkin, Z.; Dagher, P.C. Minocycline inhibits apoptosis and inflammation in a rat model of ischemic renal injury. Am. J. Physiol. Renal Physiol., 2004, 287(4), F760-F766.
[http://dx.doi.org/10. 1152/ajprenal.00050.2004] [PMID: 15172883]
[91]
Kraus, R.L.; Pasieczny, R.; Lariosa-Willingham, K.; Turner, M.S.; Jiang, A.; Trauger, J.W. Antioxidant properties of minocycline: neuroprotection in an oxidative stress assay and direct radical-scavenging activity. J. Neurochem., 2005, 94(3), 819-827.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03219.x] [PMID: 16033424]
[92]
Suk, K. Minocycline suppresses hypoxic activation of rodent microglia in culture. Neurosci. Lett., 2004, 366(2), 167-171.
[http://dx.doi.org/10.1016/j.neulet.2004.05.038] [PMID: 15276240]
[93]
Zemlan, F.P.; Kow, L.M.; Pfaff, D.W. Spinal serotonin (5-HT) receptor subtypes and nociception. J. Pharmacol. Exp. Ther., 1983, 226(2), 477-485.
[PMID: 6308209]
[94]
Hall, F.S.; Schwarzbaum, J.M.; Perona, M.T.; Templin, J.S.; Caron, M.G.; Lesch, K.P.; Murphy, D.L.; Uhl, G.R. A greater role for the norepinephrine transporter than the serotonin transporter in murine nociception. Neuroscience, 2011, 175, 315-327.
[http://dx.doi.org/10.1016/j.neuroscience.2010.11.057] [PMID: 21129446]
[95]
Bellingham, G.A.; Peng, P.W. Duloxetine: a review of its pharmacology and use in chronic pain management. Reg. Anesth. Pain Med., 2010, 35(3), 294-303.
[http://dx.doi.org/10.1097/AAP.0b013 e3181df2645] [PMID: 20921842]
[96]
Durand, J.P.; Deplanque, G.; Montheil, V.; Gornet, J.M.; Scotte, F.; Mir, O.; Cessot, A.; Coriat, R.; Raymond, E.; Mitry, E.; Herait, P.; Yataghene, Y.; Goldwasser, F. Efficacy of venlafaxine for the prevention and relief of oxaliplatin-induced acute neurotoxicity: results of EFFOX, a randomized, double-blind, placebo-controlled phase III trial. Ann. Oncol., 2012, 23(1), 200-205.
[http://dx.doi.org/10.1093/annonc/mdr045] [PMID: 21427067]
[97]
Smith, E.M.; Pang, H.; Cirrincione, C.; Fleishman, S.; Paskett, E.D.; Ahles, T.; Bressler, L.R.; Fadul, C.E.; Knox, C.; Le-Lindqwister, N.; Gilman, P.B.; Shapiro, C.L. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: a randomized clinical trial. JAMA, 2013, 309(13), 1359-1367.
[http://dx.doi.org/10. 1001/jama.2013.2813] [PMID: 23549581]
[98]
Hershman, D.L.; Lacchetti, C.; Dworkin, R.H.; Lavoie Smith, E.M.; Bleeker, J.; Cavaletti, G.; Chauhan, C.; Gavin, P.; Lavino, A.; Lustberg, M.B.; Paice, J.; Schneider, B.; Smith, M.L.; Smith, T.; Terstriep, S.; Wagner-Johnston, N.; Bak, K.; Loprinzi, C.L. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol., 2014, 32(18), 1941-1967.
[http://dx.doi.org/10.1200/JCO.2013.54.0914] [PMID: 24733808]
[99]
Zhao, Z.; Zhang, H.T.; Bootzin, E.; Millan, M.J.; O’Donnell, J.M. Association of changes in norepinephrine and serotonin transporter expression with the long-term behavioral effects of antidepressant drugs. Neuropsychopharmacology, 2009, 34(6), 1467-1481.
[http://dx.doi.org/10.1038/npp.2008.183] [PMID: 18923402]
[100]
Sada, H.; Egashira, N.; Ushio, S.; Kawashiri, T.; Shirahama, M.; Oishi, R. Repeated administration of amitriptyline reduces oxaliplatin-induced mechanical allodynia in rats. J. Pharmacol. Sci., 2012, 118(4), 547-551.
[http://dx.doi.org/10.1254/jphs.12006SC] [PMID: 22466962]
[101]
Kautio, A.L.; Haanpää, M.; Saarto, T.; Kalso, E. Amitriptyline in the treatment of chemotherapy-induced neuropathic symptoms. J. Pain Symptom Manage., 2008, 35(1), 31-39.
[http://dx.doi.org/ 10.1016/j.jpainsymman.2007.02.043] [PMID: 17980550]
[102]
Kautio, A.L.; Haanpää, M.; Leminen, A.; Kalso, E.; Kautiainen, H.; Saarto, T. Amitriptyline in the prevention of chemotherapy-induced neuropathic symptoms. Anticancer Res., 2009, 29(7), 2601-2606.
[PMID: 19596934]
[103]
Gewandter, J.S.; Mohile, S.G.; Heckler, C.E.; Ryan, J.L.; Kirshner, J.J.; Flynn, P.J.; Hopkins, J.O.; Morrow, G.R. A phase III randomized, placebo-controlled study of topical amitriptyline and ketamine for chemotherapy-induced peripheral neuropathy (CIPN): a University of Rochester CCOP study of 462 cancer survivors. Support. Care Cancer, 2014, 22(7), 1807-1814.
[http://dx.doi.org/10.1007/s00520-014-2158-7] [PMID: 24531792]
[104]
Hammack, J.E.; Michalak, J.C.; Loprinzi, C.L.; Sloan, J.A.; Novotny, P.J.; Soori, G.S.; Tirona, M.T.; Rowland, K.M., Jr; Stella, P.J.; Johnson, J.A. Phase III evaluation of nortriptyline for alleviation of symptoms of cis-platinum-induced peripheral neuropathy. Pain, 2002, 98(1-2), 195-203.
[http://dx.doi.org/10.1016/S0304-3959(02)00047-7] [PMID: 12098632]
[105]
Bet, P.M.; Hugtenburg, J.G.; Penninx, B.W.; Hoogendijk, W.J. Side effects of antidepressants during long-term use in a naturalistic setting. Eur. Neuropsychopharmacol., 2013, 23(11), 1443-1451.
[http://dx.doi.org/10.1016/j.euroneuro.2013.05.001] [PMID: 23726508]
[106]
Di Cesare Mannelli, L.; Zanardelli, M.; Failli, P.; Ghelardini, C. Oxaliplatin-induced neuropathy: oxidative stress as pathological mechanism. Protective effect of silibinin. J. Pain, 2012, 13(3), 276-284.
[http://dx.doi.org/10.1016/j.jpain.2011.11.009] [PMID: 22325298]
[107]
Doyle, T.; Chen, Z.; Muscoli, C.; Bryant, L.; Esposito, E.; Cuzzocrea, S.; Dagostino, C.; Ryerse, J.; Rausaria, S.; Kamadulski, A.; Neumann, W.L.; Salvemini, D. Targeting the overproduction of peroxynitrite for the prevention and reversal of paclitaxel-induced neuropathic pain. J. Neurosci., 2012, 32(18), 6149-6160.
[http://dx.doi.org/10.1523/JNEUROSCI.6343-11.2012] [PMID: 22553021]
[108]
Florea, A.M.; Büsselberg, D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel), 2011, 3(1), 1351-1371.
[http://dx.doi.org/ 10.3390/cancers3011351] [PMID: 24212665]
[109]
Joseph, E.K.; Chen, X.; Bogen, O.; Levine, J.D. Oxaliplatin acts on IB4-positive nociceptors to induce an oxidative stress-dependent acute painful peripheral neuropathy. J. Pain, 2008, 9(5), 463-472.
[http://dx.doi.org/10.1016/j.jpain.2008.01.335] [PMID: 18359667]
[110]
Sawicka, E.; Długosz, A.; Rembacz, K.P.; Guzik, A. The effects of coenzyme Q10 and baicalin in cisplatin-induced lipid peroxidation and nitrosative stress. Acta Pol. Pharm., 2013, 70(6), 977-985.
[PMID: 24383321]
[111]
Areti, A.; Yerra, V.G.; Naidu, V.; Kumar, A. Oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy. Redox Biol., 2014, 2, 289-295.
[http://dx.doi.org/10.1016/j.redox.2014.01.006] [PMID: 24494204]
[112]
Majsterek, I.; Gloc, E.; Blasiak, J.; Reiter, R.J. A comparison of the action of amifostine and melatonin on DNA-damaging effects and apoptosis induced by idarubicin in normal and cancer cells. J. Pineal Res., 2005, 38(4), 254-263.
[http://dx.doi.org/10.1111/j.1600-079X.2005.00197.x] [PMID: 15813902]
[113]
Gurney, J.G.; Bass, J.K.; Onar-Thomas, A.; Huang, J.; Chintagumpala, M.; Bouffet, E.; Hassall, T.; Gururangan, S.; Heath, J.A.; Kellie, S.; Cohn, R.; Fisher, M.J.; Panandiker, A.P.; Merchant, T.E.; Srinivasan, A.; Wetmore, C.; Qaddoumi, I.; Stewart, C.F.; Armstrong, G.T.; Broniscer, A.; Gajjar, A. Evaluation of amifostine for protection against cisplatin-induced serious hearing loss in children treated for average-risk or high-risk medulloblastoma. Neuro-oncol., 2014, 16(6), 848-855.
[http://dx.doi.org/10.1093/neuonc/not241] [PMID: 24414535]
[114]
Gallegos-Castorena, S.; Martínez-Avalos, A.; Mohar-Betancourt, A.; Guerrero-Avendaño, G.; Zapata-Tarrés, M.; Medina-Sansón, A. Toxicity prevention with amifostine in pediatric osteosarcoma patients treated with cisplatin and doxorubicin. Pediatr. Hematol. Oncol., 2007, 24(6), 403-408.
[http://dx.doi.org/10.1080/08880010701451244] [PMID: 17710657]
[115]
Hilpert, F.; Stähle, A.; Tomé, O.; Burges, A.; Rossner, D.; Späthe, K.; Heilmann, V.; Richter, B.; du Bois, A. Neuroprotection with amifostine in the first-line treatment of advanced ovarian cancer with carboplatin/paclitaxel-based chemotherapy--a double-blind, placebo-controlled, randomized phase II study from the Arbeitsgemeinschaft Gynäkologische Onkologoie (AGO) Ovarian Cancer Study Group. Support. Care Cancer, 2005, 13(10), 797-805.
[http://dx.doi.org/10.1007/s00520-005-0782-y] [PMID: 16025262]
[116]
Lorusso, D.; Ferrandina, G.; Greggi, S.; Gadducci, A.; Pignata, S.; Tateo, S.; Biamonte, R.; Manzione, L.; Di Vagno, G.; Ferrau’, F.; Scambia, G. Phase III multicenter randomized trial of amifostine as cytoprotectant in first-line chemotherapy in ovarian cancer patients. Ann. Oncol., 2003, 14(7), 1086-1093.
[http://dx.doi.org/10.1093/annonc/mdg301] [PMID: 12853351]
[117]
Kemp, G.; Rose, P.; Lurain, J.; Berman, M.; Manetta, A.; Roullet, B.; Homesley, H.; Belpomme, D.; Glick, J. Amifostine pretreatment for protection against cyclophosphamide-induced and cisplatin-induced toxicities: results of a randomized control trial in patients with advanced ovarian cancer. J. Clin. Oncol., 1996, 14(7), 2101-2112.
[http://dx.doi.org/10.1200/JCO.1996.14.7.2101] [PMID: 8683243]
[118]
Duval, M.; Daniel, S.J. Meta-analysis of the efficacy of amifostine in the prevention of cisplatin ototoxicity. J. Otolaryngol. Head Neck Surg., 2012, 41(5), 309-315.
[PMID: 23092832]
[119]
Yri, O.E.; Vig, J.; Hegstad, E.; Hovde, O.; Pignon, I.; Jynge, P. Mangafodipir as a cytoprotective adjunct to chemotherapy--a case report. Acta Oncol., 2009, 48(4), 633-635.
[http://dx.doi.org/10. 1080/02841860802680427] [PMID: 19169914]
[120]
Karlsson, J.O.; Adolfsson, K.; Thelin, B.; Jynge, P.; Andersson, R.G.; Falkmer, U.G. First clinical experience with the magnetic resonance imaging contrast agent and superoxide dismutase mimetic mangafodipir as an adjunct in cancer chemotherapy-a translational study. Transl. Oncol., 2012, 5(1), 32-38.
[http://dx.doi.org/ 10.1593/tlo.11277] [PMID: 22348174]
[121]
Coriat, R.; Alexandre, J.; Nicco, C.; Quinquis, L.; Benoit, E.; Chéreau, C.; Lemaréchal, H.; Mir, O.; Borderie, D.; Tréluyer, J.M.; Weill, B.; Coste, J.; Goldwasser, F.; Batteux, F. Treatment of oxaliplatin-induced peripheral neuropathy by intravenous mangafodipir. J. Clin. Invest., 2014, 124(1), 262-272.
[http://dx.doi.org/10. 1172/JCI68730] [PMID: 24355920]
[122]
Karlsson, J.O.; Kurz, T.; Flechsig, S.; Näsström, J.; Andersson, R.G. Superior therapeutic index of calmangafodipir in comparison to mangafodipir as a chemotherapy adjunct. Transl. Oncol., 2012, 5(6), 492-502.
[http://dx.doi.org/10.1593/tlo.12238] [PMID: 23323161]
[123]
Chaparro, L.E.; Wiffen, P.J.; Moore, R.A.; Gilron, I. Combination pharmacotherapy for the treatment of neuropathic pain in adults. Cochrane Database Syst. Rev., 2012, 7(7), CD008943.
[PMID: 22786518]
[124]
Tesfaye, S.; Selvarajah, D. Morphine, gabapentin, or their combination for neuropathic pain. N. Engl. J. Med., 2005, 352(25), 2650-2651.
[http://dx.doi.org/10.1056/NEJM200506233522520] [PMID: 15981312]
[125]
Barton, D.L.; Wos, E.J.; Qin, R.; Mattar, B.I.; Green, N.B.; Lanier, K.S.; Bearden, J.D.R., III; Kugler, J.W.; Hoff, K.L.; Reddy, P.S.; Rowland, K.M., Jr; Riepl, M.; Christensen, B.; Loprinzi, C.L. A double-blind, placebo-controlled trial of a topical treatment for chemotherapy-induced peripheral neuropathy: NCCTG trial N06CA. Support. Care Cancer, 2011, 19(6), 833-841.
[http://dx.doi.org/10.1007/s00520-010-0911-0] [PMID: 20496177]
[126]
Schloss, J.M.; Colosimo, M.; Airey, C.; Masci, P.P.; Linnane, A.W.; Vitetta, L. Nutraceuticals and chemotherapy induced peripheral neuropathy (CIPN): a systematic review. Clin. Nutr., 2013, 32(6), 888-893.
[http://dx.doi.org/10.1016/j.clnu.2013.04.007] [PMID: 23647723]
[127]
Martin, L.J. Olesoxime, a cholesterol-like neuroprotectant for the potential treatment of amyotrophic lateral sclerosis. IDrugs, 2010, 13(8), 568-580.
[PMID: 20721828]
[128]
Xiao, W.H.; Zheng, H.; Bennett, G.J. Characterization of oxaliplatin-induced chronic painful peripheral neuropathy in the rat and comparison with the neuropathy induced by paclitaxel. Neuroscience, 2012, 203, 194-206.
[http://dx.doi.org/10.1016/j. neuroscience.2011.12.023] [PMID: 22200546]
[129]
Xiao, W.H.; Zheng, F.Y.; Bennett, G.J.; Bordet, T.; Pruss, R.M. Olesoxime (cholest-4-en-3-one, oxime): analgesic and neuroprotective effects in a rat model of painful peripheral neuropathy produced by the chemotherapeutic agent, paclitaxel. Pain, 2009, 147(1-3), 202-209.
[http://dx.doi.org/10.1016/j.pain.2009.09.006] [PMID: 19833436]
[130]
Bordet, T.; Buisson, B.; Michaud, M.; Abitbol, J.L.; Marchand, F.; Grist, J.; Andriambeloson, E.; Malcangio, M.; Pruss, R.M. Specific antinociceptive activity of cholest-4-en-3-one, oxime (TRO19622) in experimental models of painful diabetic and chemotherapy-induced neuropathy. J. Pharmacol. Exp. Ther., 2008, 326(2), 623-632.
[http://dx.doi.org/10.1124/jpet.108.139410] [PMID: 18492948]
[131]
Bobylev, I.; Peters, D.; Vyas, M.; Barham, M.; Klein, I.; von Strandmann, E.P.; Neiss, W.F.; Lehmann, H.C. Kinesin-5 Blocker monastrol protects against bortezomib-Induced peripheral neurotoxicity. Neurotox. Res., 2017, 32(4), 555-562.
[http://dx.doi.org/ 10.1007/s12640-017-9760-7] [PMID: 28612296]
[132]
Patte-Mensah, C.; Meyer, L.; Taleb, O.; Mensah-Nyagan, A.G. Potential role of allopregnanolone for a safe and effective therapy of neuropathic pain. Prog. Neurobiol., 2014, 113, 70-78.
[http://dx.doi.org/10.1016/j.pneurobio.2013.07.004] [PMID: 23948490]
[133]
Meyer, L.; Patte-Mensah, C.; Taleb, O.; Mensah-Nyagan, A.G. Cellular and functional evidence for a protective action of neurosteroids against vincristine chemotherapy-induced painful neuropathy. Cell. Mol. Life Sci., 2010, 67(17), 3017-3034.
[http://dx.doi.org/10.1007/s00018-010-0372-0] [PMID: 20431905]
[134]
Meyer, L.; Patte-Mensah, C.; Taleb, O.; Mensah-Nyagan, A.G. Neurosteroid 3α-androstanediol efficiently counteracts paclitaxel-induced peripheral neuropathy and painful symptoms. PLoS One, 2013, 8(11), e80915.
[http://dx.doi.org/10.1371/journal.pone. 0080915] [PMID: 24260511]
[135]
Meyer, L.; Patte-Mensah, C.; Taleb, O.; Mensah-Nyagan, A.G. Allopregnanolone prevents and suppresses oxaliplatin-evoked painful neuropathy: multi-parametric assessment and direct evidence. Pain, 2011, 152(1), 170-181.
[http://dx.doi.org/10.1016/j.pain. 2010.10.015] [PMID: 21071147]
[136]
Afonseca, S.O.; Cruz, F.M. Cubero, Dde.I.; Lera, A.T.; Schindler, F.; Okawara, M.; Souza, L.F.; Rodrigues, N.P.; Giglio, Ad. Vitamin E for prevention of oxaliplatin-induced peripheral neuropathy: a pilot randomized clinical trial. Sao Paulo Med. J., 2013, 131(1), 35-38.
[http://dx.doi.org/10.1590/S1516-31802013000100006] [PMID: 23538593]
[137]
Pace, A.; Savarese, A.; Picardo, M.; Maresca, V.; Pacetti, U.; Del Monte, G.; Biroccio, A.; Leonetti, C.; Jandolo, B.; Cognetti, F.; Bove, L. Neuroprotective effect of vitamin E supplementation in patients treated with cisplatin chemotherapy. J. Clin. Oncol., 2003, 21(5), 927-931.
[http://dx.doi.org/10.1200/JCO.2003.05.139] [PMID: 12610195]
[138]
Areti, A.; Komirishetty, P.; Kumar, A. Carvedilol prevents functional deficits in peripheral nerve mitochondria of rats with oxaliplatin-evoked painful peripheral neuropathy. Toxicol. Appl. Pharmacol., 2017, 322, 97-103.
[http://dx.doi.org/10.1016/j.taap. 2017.03.009] [PMID: 28286117]
[139]
Cata, J.P.; Weng, H.R.; Dougherty, P.M. The effects of thalidomide and minocycline on taxol-induced hyperalgesia in rats. Brain Res., 2008, 1229, 100-110.
[http://dx.doi.org/10.1016/j.brainres.2008. 07.001] [PMID: 18652810]
[140]
Maj, M.A.; Ma, J.; Krukowski, K.N.; Kavelaars, A.; Heijnen, C.J. Inhibition of mitochondrial p53 Accumulation by PFT-μ prevents cisplatin-induced peripheral neuropathy. Front. Mol. Neurosci., 2017, 10, 108.
[http://dx.doi.org/10.3389/fnmol.2017.00108] [PMID: 28458631]
[141]
Vivoli, E.; Di Cesare Mannelli, L.; Salvicchi, A.; Bartolini, A.; Koverech, A.; Nicolai, R.; Benatti, P.; Ghelardini, C. Acetyl-L-carnitine increases artemin level and prevents neurotrophic factor alterations during neuropathy. Neuroscience, 2010, 167(4), 1168-1174.
[http://dx.doi.org/10.1016/j.neuroscience.2010.03.017] [PMID: 20302919]
[142]
Di Cesare Mannelli, L.; Ghelardini, C.; Toscano, A.; Pacini, A.; Bartolini, A. The neuropathy-protective agent acetyl-L-carnitine activates protein kinase C-gamma and MAPKs in a rat model of neuropathic pain. Neuroscience, 2010, 165(4), 1345-1352.
[http://dx.doi.org/10.1016/j.neuroscience.2009.11.021] [PMID: 19925851]
[143]
Hershman, D.L.; Unger, J.M.; Crew, K.D.; Minasian, L.M.; Awad, D.; Moinpour, C.M.; Hansen, L.; Lew, D.L.; Greenlee, H.; Fehrenbacher, L.; Wade, J.L.R., III; Wong, S.F.; Hortobagyi, G.N.; Meyskens, F.L.; Albain, K.S. Randomized double-blind placebo-controlled trial of acetyl-L-carnitine for the prevention of taxane-induced neuropathy in women undergoing adjuvant breast cancer therapy. J. Clin. Oncol., 2013, 31(20), 2627-2633.
[http://dx.doi.org/10.1200/JCO.2012.44.8738] [PMID: 23733756]
[144]
Engle, D.B.; Belisle, J.A.; Gubbels, J.A.; Petrie, S.E.; Hutson, P.R.; Kushner, D.M.; Patankar, M.S. Effect of acetyl-l-carnitine on ovarian cancer cells’ proliferation, nerve growth factor receptor (Trk-A and p75) expression, and the cytotoxic potential of paclitaxel and carboplatin. Gynecol. Oncol., 2009, 112(3), 631-636.
[http://dx.doi.org/10.1016/j.ygyno.2008.11.020] [PMID: 19263582]
[145]
Maestri, A.; De Pasquale Ceratti, A.; Cundari, S.; Zanna, C.; Cortesi, E.; Crinò, L. A pilot study on the effect of acetyl-L-carnitine in paclitaxel- and cisplatin-induced peripheral neuropathy. Tumori, 2005, 91(2), 135-138.
[PMID: 15948540]
[146]
Campone, M.; Berton-Rigaud, D.; Joly-Lobbedez, F.; Baurain, J.F.; Rolland, F.; Stenzl, A.; Fabbro, M.; van Dijk, M.; Pinkert, J.; Schmelter, T.; de Bont, N.; Pautier, P. A double-blind, randomized phase II study to evaluate the safety and efficacy of acetyl-L-carnitine in the prevention of sagopilone-induced peripheral neuropathy. Oncologist, 2013, 18(11), 1190-1191.
[http://dx.doi.org/ 10.1634/theoncologist.2013-0061] [PMID: 24105751]
[147]
Sun, Y.; Shu, Y.; Liu, B.; Liu, P.; Wu, C.; Zheng, R.; Zhang, X.; Zhuang, Z.; Deng, Y.; Zheng, L.; Xu, Q.; Jiang, B.; Ouyang, X.; Gao, J.; Xu, N.; Li, X.; Jiang, S.; Liang, C.; Yao, Y. A prospective study to evaluate the efficacy and safety of oral acetyl-L-carnitine for the treatment of chemotherapy-induced peripheral neuropathy. Exp. Ther. Med., 2016, 12(6), 4017-4024.
[http://dx.doi.org/10. 3892/etm.2016.3871] [PMID: 28105133]
[148]
Wang, W.S.; Lin, J.K.; Lin, T.C.; Chen, W.S.; Jiang, J.K.; Wang, H.S.; Chiou, T.J.; Liu, J.H.; Yen, C.C.; Chen, P.M. Oral glutamine is effective for preventing oxaliplatin-induced neuropathy in colorectal cancer patients. Oncologist, 2007, 12(3), 312-319.
[http://dx.doi.org/10.1634/theoncologist.12-3-312] [PMID: 17405895]
[149]
Loven, D.; Levavi, H.; Sabach, G.; Zart, R.; Andras, M.; Fishman, A.; Karmon, Y.; Levi, T.; Dabby, R.; Gadoth, N. Long-term glutamate supplementation failed to protect against peripheral neurotoxicity of paclitaxel. Eur. J. Cancer Care (Engl.), 2009, 18(1), 78-83.
[http://dx.doi.org/10.1111/j.1365-2354.2008.00996.x] [PMID: 19473225]
[150]
Strasser, F.; Demmer, R.; Böhme, C.; Schmitz, S.F.; Thuerlimann, B.; Cerny, T.; Gillessen, S. Prevention of docetaxel- or paclitaxel-associated taste alterations in cancer patients with oral glutamine: a randomized, placebo-controlled, double-blind study. Oncologist, 2008, 13(3), 337-346.
[http://dx.doi.org/10.1634/theoncologist. 2007-0217] [PMID: 18378545]
[151]
Stubblefield, M.D.; Vahdat, L.T.; Balmaceda, C.M.; Troxel, A.B.; Hesdorffer, C.S.; Gooch, C.L. Glutamine as a neuroprotective agent in high-dose paclitaxel-induced peripheral neuropathy: a clinical and electrophysiologic study. Clin. Oncol. (R. Coll. Radiol.), 2005, 17(4), 271-276.
[http://dx.doi.org/10.1016/j.clon. 2004.11.014] [PMID: 15997923]
[152]
von Delius, S.; Eckel, F.; Wagenpfeil, S.; Mayr, M.; Stock, K.; Kullmann, F.; Obermeier, F.; Erdmann, J.; Schmelz, R.; Quasthoff, S.; Adelsberger, H.; Bredenkamp, R.; Schmid, R.M.; Lersch, C. Carbamazepine for prevention of oxaliplatin-related neurotoxicity in patients with advanced colorectal cancer: final results of a randomised, controlled, multicenter phase II study. Invest. New Drugs, 2007, 25(2), 173-180.
[http://dx.doi.org/10.1007/s10637-006-9010-y] [PMID: 16983507]
[153]
Argyriou, A.A.; Chroni, E.; Polychronopoulos, P.; Iconomou, G.; Koutras, A.; Makatsoris, T.; Gerolymos, M.K.; Gourzis, P.; Assimakopoulos, K.; Kalofonos, H.P. Efficacy of oxcarbazepine for prophylaxis against cumulative oxaliplatin-induced neuropathy. Neurology, 2006, 67(12), 2253-2255.
[http://dx.doi.org/10.1212/01. wnl.0000249344.99671.d4] [PMID: 17190958]
[154]
Kottschade, L.A.; Sloan, J.A.; Mazurczak, M.A.; Johnson, D.B.; Murphy, B.P.; Rowland, K.M.; Smith, D.A.; Berg, A.R.; Stella, P.J.; Loprinzi, C.L. The use of vitamin E for the prevention of chemotherapy-induced peripheral neuropathy: results of a randomized phase III clinical trial. Support. Care Cancer, 2011, 19(11), 1769-1777.
[http://dx.doi.org/10.1007/s00520-010-1018-3] [PMID: 20936417]
[155]
Guo, Y.; Jones, D.; Palmer, J.L.; Forman, A.; Dakhil, S.R.; Velasco, M.R.; Weiss, M.; Gilman, P.; Mills, G.M.; Noga, S.J.; Eng, C.; Overman, M.J.; Fisch, M.J. Oral alpha-lipoic acid to prevent chemotherapy-induced peripheral neuropathy: a randomized, double-blind, placebo-controlled trial. Support. Care Cancer, 2014, 22(5), 1223-1231.
[http://dx.doi.org/10.1007/s00520-013-2075-1] [PMID: 24362907]
[156]
Schloss, J.M.; Colosimo, M.; Airey, C.; Masci, P.; Linnane, A.W.; Vitetta, L. A randomised, placebo-controlled trial assessing the efficacy of an oral B group vitamin in preventing the development of chemotherapy-induced peripheral neuropathy (CIPN). Support. Care Cancer, 2017, 25(1), 195-204.
[http://dx.doi.org/10.1007/s00520-016-3404-y] [PMID: 27612466]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy