[1]
Schwertmann, U.; Cornell, R.M. Iron oxides in the laboratory: Preparation and characterization; John Wiley & Sons, 2008, p. 6.
[2]
Cornell, R.M.; Schwertmann, U. The iron oxides: Structure, properties, reactions, occurrences and uses; John Wiley & Sons, 2003, pp. 1-2.
[3]
Fernández-Remolar, D.C. Iron oxides, hydroxides and oxy-hydroxides. Encycl. Astrobiology; Springer, 2014, pp. 1268-1270.
[4]
Cordova, G.; Attwood, S.; Gaikwad, R.; Gu, F.; Leonenko, Z. Magnetic force microscopy characterization of Superparamagnetic Iron Oxide Nanoparticles (SPIONs). Nano Biomed. Eng., 2014, 6(1), 31-39.
[5]
Hasany, S.F.; Abdurahman, N.H.; Sunarti, A.R.; Jose, R. Magnetic iron oxide nanoparticles: Chemical synthesis and applications review. Curr. Nanosci., 2013, 9(5), 561-575.
[6]
Xie, J.; Jon, S. Magnetic nanoparticle-based theranostics. Theranostics, 2012, 2, 122-124.
[7]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L.V.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008, 108, 2064-2110.
[8]
Wu, W.; He, Q.G.; Hu, R.; Huang, J.K.; Chen, H. Preparation and characterization of magnetite Fe3O4 nanopowders. Rare Met. Mater. Eng., 2007, 36, 238.
[9]
Hu, M.; Jiang, J-S.; Bu, F-X.; Cheng, X-L.; Lin, C-C.; Zeng, Y. Hierarchical magnetic iron (III) oxides prepared by solid-state thermal decomposition of coordination polymers. RSC Adv., 2012, 2, 4782.
[10]
Hu, M.; Jiang, J-S.; Zeng, Y. Prussian blue microcrystals prepared by selective etching and their conversion to mesoporous magnetic iron (III) oxides. Chem. Commun., 2010, 46, 1133.
[11]
Wu, W.; He, Q.G.; Jiang, C.Z. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett., 2008, 3, 397.
[12]
Walton, R.I. Subcritical solvothermal synthesis of condensed inorganic materials. Chem. Soc. Rev., 2002, 31, 230.
[13]
Pandey, S.; Mishra, S. Sol-gel derived organic– inorganic hybrid materials: Synthesis, characterizations and applications. J. Sol-Gel Sci. Technol., 2011, 59, 73.
[14]
Dong, W.T.; Zhu, C.S. Use of ethylene oxide in the sol-gel synthesis of α-Fe2O3 nanoparticles from Fe(III) salts. J. Mater. Chem., 2002, 12, 1676.
[15]
Wongwailikhit, K.; Horwongsakul, S. The preparation of iron (III) oxide nanoparticles using w/o microemulsion. Mater. Lett., 2011, 65, 2820.
[16]
Han, L-H.; Liu, H.; Wei, Y. In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method. Powder Technol., 2011, 207, 42.
[17]
Xu, H.; Zeiger, B.W.; Suslick, K.S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev., 2013, 42, 2555.
[18]
Scheffel, A.; Gruska, M.; Faivre, D.; Linaroudis, A.; Plitzko, J.M.; Schuler, D. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature, 2006, 440, 110.
[19]
Bazylinski, D.A.; Frankel, R.B. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol., 2004, 2, 217.
[20]
Choppala, G.; Bolan, N.; Park, J.H. Chapter Two-Chromium contamination
and its risk management in complex environmental settings,
in advances in agronomy, L.S. Donald, Ed. 2013, Academic
Press. pp. 129-172.
[21]
Hashim, M.A.; Mukhopadhyay, S.; Sahu, J.N.; Sengupta, B. Remediation technologies for heavy metal contaminated ground water. J. Environ. Manage., 2011, 92(10), 2355-2388.
[22]
Farooq, U.; Kozinski, J.A.; Khan, M.A.; Athar, M. Biosorption of heavy metal ions using wheat based biosorbents-a review of the recent literature. Bioresour. Technol., 2010, 101(14), 5043.
[23]
Mohan, D.; Pittman, C.U. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater., 2006, 137(2), 762.
[24]
Sud, D.; Mahajan, G.; Kaur, M.P. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review. Bioresour. Technol., 2008, 99(14), 6017.
[25]
Hanif, S.; Shahzad, A. Removal of chromium(VI) and dye Alizarin Red S (ARS) using polymer-coated iron oxide (Fe3O4) magnetic nanoparticles by co-precipitation method. J. Nanopart. Res., 2014, 16(6), 2429.
[26]
Basavaraja, S.; Balaji, D.S.; Bedre, M.D. Solvothermal synthesis and characterization of acicular α-Fe2O3 nanoparticles. Bull. Mater. Sci., 2011, 34, 1313.
[27]
Coates, J. Interpretation of infrared spectra, a practical approach. Encyclopedia of Analytical Chemistry., Meyers, A., Ed., Chichester:
John Wiley & Sons Ltd. 2000, 10815.
[28]
Rahman, M.M.; Khan, S.B.; Jamal, A. Iron oxide nanoparticles.
Intech Open access publisher. 2011, ISBN: 9789533079134, pp.
43.
[29]
Yuan, P.; Liu, D.; Fan, M.; Yang, D.; Zhu, R.; Ge, F.; Zhu, J.; He, H. Removal of hexavalent chromium [Cr (VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. J. Hazard. Mater., 2010, 173(1-3), 614.
[30]
Adegoke, H.I. AmooAdekola, F.; Fatoki, O.S.; Ximba, B.J. Adsorption of Cr (VI) on synthetic hematite (α-Fe2O3) nanoparticles of different morphologies. Korean J. Chem. Eng., 2013, 31(1), 142-154.
[31]
Srivastava, V.; Sharma, Y.C. Synthesis and characterization of Fe3O4@n-SiO2 nanoparticles from an agrowaste material and its application for the removal of Cr (VI) from Aqueous Solutions. Water Air Soil Pollut., 2014, 225, 1776.
[32]
Luo, C.; Tian, Z.; Yang, B.; Zhang, L.; Yan, S. Manganese dioxide/iron oxide/acid oxidized multi-walled carbon nanotube magnetic nanocomposite for enhanced hexavalent chromium removal. Chem. Eng. J., 2013, 234, 256-265.
[33]
Jiang, W.; Pelaez, M.; Dionysiou, D.D.; Entezari, M.H.; Tsoutsou, D.; O’Shea, K. Chromium (VI) removal by maghemite nanoparticles. Chem. Eng. J., 2013, 222(15), 527-533.
[34]
Jain, M.; Garg, V.K.; Kadirvelu, K. Adsorption of hexavalent chromium from aqueous medium onto carbonaceous adsorbents prepared from waste biomass. J. Environ. Manage., 2010, 91, 949-957.