Abstract
This study evaluated the antioxidative effects of magnolol based on the mouse model induced by Enterotoxigenic Escherichia coli (E. coli, ETEC). All experimental mice were equally treated with ETEC suspensions (3.45×109 CFU/ml) after oral administration of magnolol for 7 days at the dose of 0, 100, 300 and 500 mg/kg Body Weight (BW), respectively. The oxidative metabolites and antioxidases for each sample (organism of mouse) were determined: Malondialdehyde (MDA), Nitric Oxide (NO), Glutathione (GSH), Myeloperoxidase (MPO), Catalase (CAT), Superoxide Dismutase (SOD), and Glutathione Peroxidase (GPx). In addition, we also determined the corresponding mRNA expressions of CAT, SOD and GPx as well as the Total Antioxidant Capacity (T-AOC). The experiment was completed with a theoretical study that predicts a series of 79 ChEMBL activities of magnolol with 47 proteins in 18 organisms using a Quantitative Structure- Activity Relationship (QSAR) classifier based on the Moving Averages (MAs) of Rcpi descriptors in three types of experimental conditions (biological activity with specific units, protein target and organisms). Six Machine Learning methods from Weka software were tested and the best QSAR classification model was provided by Random Forest with True Positive Rate (TPR) of 0.701 and Area under Receiver Operating Characteristic (AUROC) of 0.790 (test subset, 10-fold crossvalidation). The model is predicting if the new ChEMBL activities are greater or lower than the average values for the magnolol targets in different organisms.
Keywords: QSAR model, Magnolol, Antioxidative activity, Reactive oxygen species, Machine learning, Random forest.
Graphical Abstract
Current Topics in Medicinal Chemistry
Title:General Machine Learning Model, Review, and Experimental-Theoretic Study of Magnolol Activity in Enterotoxigenic Induced Oxidative Stress
Volume: 17 Issue: 26
Author(s): Yanli Deng, Yong Liu, Shaoxun Tang, Chuanshe Zhou, Xuefeng Han, Wenjun Xiao*, Lucas Anton Pastur-Romay, Jose Manuel Vazquez-Naya, Javier Pereira Loureiro, Cristian R. Munteanu and Zhiliang Tan*
Affiliation:
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128,China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan 410125,China
Keywords: QSAR model, Magnolol, Antioxidative activity, Reactive oxygen species, Machine learning, Random forest.
Abstract: This study evaluated the antioxidative effects of magnolol based on the mouse model induced by Enterotoxigenic Escherichia coli (E. coli, ETEC). All experimental mice were equally treated with ETEC suspensions (3.45×109 CFU/ml) after oral administration of magnolol for 7 days at the dose of 0, 100, 300 and 500 mg/kg Body Weight (BW), respectively. The oxidative metabolites and antioxidases for each sample (organism of mouse) were determined: Malondialdehyde (MDA), Nitric Oxide (NO), Glutathione (GSH), Myeloperoxidase (MPO), Catalase (CAT), Superoxide Dismutase (SOD), and Glutathione Peroxidase (GPx). In addition, we also determined the corresponding mRNA expressions of CAT, SOD and GPx as well as the Total Antioxidant Capacity (T-AOC). The experiment was completed with a theoretical study that predicts a series of 79 ChEMBL activities of magnolol with 47 proteins in 18 organisms using a Quantitative Structure- Activity Relationship (QSAR) classifier based on the Moving Averages (MAs) of Rcpi descriptors in three types of experimental conditions (biological activity with specific units, protein target and organisms). Six Machine Learning methods from Weka software were tested and the best QSAR classification model was provided by Random Forest with True Positive Rate (TPR) of 0.701 and Area under Receiver Operating Characteristic (AUROC) of 0.790 (test subset, 10-fold crossvalidation). The model is predicting if the new ChEMBL activities are greater or lower than the average values for the magnolol targets in different organisms.
Export Options
About this article
Cite this article as:
Deng Yanli , Liu Yong , Tang Shaoxun , Zhou Chuanshe , Han Xuefeng, Xiao Wenjun *, Pastur-Romay Anton Lucas , Vazquez-Naya Manuel Jose , Loureiro Pereira Javier, Munteanu R. Cristian and Tan Zhiliang *, General Machine Learning Model, Review, and Experimental-Theoretic Study of Magnolol Activity in Enterotoxigenic Induced Oxidative Stress, Current Topics in Medicinal Chemistry 2017; 17 (26) . https://dx.doi.org/10.2174/1568026617666170821130315
DOI https://dx.doi.org/10.2174/1568026617666170821130315 |
Print ISSN 1568-0266 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4294 |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements