Review Article

针对寄生虫半胱氨酸蛋白酶为靶点的结构研究

卷 26, 期 23, 2019

页: [4435 - 4453] 页: 19

弟呕挨: 10.2174/0929867324666170810165302

价格: $65

摘要

半胱氨酸蛋白酶是存在于大多数生物体中的必需水解酶,包括病毒和单细胞寄生虫。 尽管这些蛋白质之间显示出很高的序列同一性,但跨不同物种的特定结构特征仍赋予这些生物分子以独特的功能,这些功能通常与病理状况有关。 因此,近几十年来,它们作为潜在的特异性抑制剂的有希望的靶标的相关性得到了强调,并偶尔得到了验证。 在这篇综述中,我们讨论了基于结构的运动的最新成果,这些运动的目的是发现新的针对克鲁萨因和福利帕星的抑制剂原型,分别作为南美锥虫病和疟疾治疗的替代治疗工具。 计算和合成方法已在点击优化策略上进行了组合,并在本文中进行了讨论。 这些理论被扩展到其他热带传染病和被忽视的病理,例如血吸虫病,利什曼病和巴贝虫病,还扩展到阿尔茨海默氏病,这是一种广泛存在的神经退行性疾病,目前无法通过药物进行有效管理,并且最近与人半胱氨酸蛋白酶的特殊生理病理作用有关。

关键词: 基于结构的策略,半胱氨酸蛋白酶,cruzain,falcipain,人组织蛋白酶,热带传染病,阿尔茨海默氏病。

[1]
Costa, T.F.; Lima, A.P. Natural cysteine protease inhibitors in protozoa: Fifteen years of the chagasin family. Biochimie, 2016, 122, 197-207.
[http://dx.doi.org/10.1016/j.biochi.2015.11.002] [PMID: 26546840]
[2]
McKerrow, J.H.; Caffrey, C.; Kelly, B.; Loke, P.; Sajid, M. Proteases in parasitic diseases. Annu. Rev. Pathol., 2006, 1, 497-536.
[http://dx.doi.org/10.1146/annurev.pathol.1.110304.100151] [PMID: 18039124]
[3]
McKerrow, J.H.; Rosenthal, P.J.; Swenerton, R.; Doyle, P. Development of protease inhibitors for protozoan infections. Curr. Opin. Infect. Dis., 2008, 21(6), 668-672.
[http://dx.doi.org/10.1097/QCO.0b013e328315cca9] [PMID: 18978536]
[4]
Rosenthal, P.J.; Wollish, W.S.; Palmer, J.T.; Rasnick, D. Antimalarial effects of peptide inhibitors of a Plasmodium falciparum cysteine proteinase. J. Clin. Invest., 1991, 88(5), 1467-1472.
[http://dx.doi.org/10.1172/JCI115456] [PMID: 1939639]
[5]
Rosenthal, P.J.; Lee, G.K.; Smith, R.E. Inhibition of a Plasmodium vinckei cysteine proteinase cures murine malaria. J. Clin. Invest., 1993, 91(3), 1052-1056.
[http://dx.doi.org/10.1172/JCI116262] [PMID: 8450035]
[6]
Rosenthal, P.J.; Olson, J.E.; Lee, G.K.; Palmer, J.T.; Klaus, J.L.; Rasnick, D. Antimalarial effects of vinyl sulfone cysteine proteinase inhibitors. Antimicrob. Agents Chemother., 1996, 40(7), 1600-1603.
[http://dx.doi.org/10.1128/AAC.40.7.1600] [PMID: 8807047]
[7]
Engel, J.C.; Doyle, P.S.; Hsieh, I.; McKerrow, J.H. Cysteine protease inhibitors cure an experimental Trypanosoma cruzi infection. J. Exp. Med., 1998, 188(4), 725-734.
[http://dx.doi.org/10.1084/jem.188.4.725] [PMID: 9705954]
[8]
Lecaille, F.; Kaleta, J.; Brömme, D. Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem. Rev., 2002, 102(12), 4459-4488.
[http://dx.doi.org/10.1021/cr0101656] [PMID: 12475197]
[9]
Lima, A.P.; Reis, F.C.; Costa, T.F. Cysteine peptidase inhibitors in trypanosomatid parasites. Curr. Med. Chem., 2013, 20(25), 3152-3173.
[http://dx.doi.org/10.2174/0929867311320250009] [PMID: 23514421]
[10]
Schmunis, G.A. Epidemiology of Chagas disease in non-endemic countries: The role of international migration. Mem. Inst. Oswaldo Cruz, 2007, 102(Suppl. 1), 75-85.
[http://dx.doi.org/10.1590/S0074-02762007005000093] [PMID: 17891282]
[11]
Gascon, J.; Bern, C.; Pinazo, M.J. Chagas disease in Spain, the United States and other non-endemic countries. Acta Trop., 2010, 115(1-2), 22-27.
[http://dx.doi.org/10.1016/j.actatropica.2009.07.019] [PMID: 19646412]
[12]
Roca, C.; Pinazo, M.J.; López-Chejade, P.; Bayó, J.; Posada, E.; López-Solana, J.; Gállego, M.; Portús, M.; Gascón, J. Chagas-Clot Research Group. Chagas disease among the Latin American adult population attending in a primary care center in Barcelona, Spain. PLoS Negl. Trop. Dis., 2011, 5(4)e1135
[http://dx.doi.org/10.1371/journal.pntd.0001135] [PMID: 21572511]
[13]
World Health Organization (WHO). Chagas disease (American trypanosomiasis).. http://www.who.int/mediacentre/factsheets/fs340/en/ (Accessed September 02, 2016).
[14]
Bern, C.; Kjos, S.; Yabsley, M.J.; Montgomery, S.P. Trypanosoma cruzi and Chagas disease in the United States. Clin. Microbiol. Rev., 2011, 24(4), 655-681.
[http://dx.doi.org/10.1128/CMR.00005-11] [PMID: 21976603]
[15]
Albajar-Vinas, P.; Jannin, J. The hidden Chagas disease burden in Europe. Euro surveillance: European communicable disease bulletin., 2011, 16(38), 19975.
[http://dx.doi.org/10.2807/ese.16.38.19975-en]
[16]
Garza, M.; Feria Arroyo, T.P.; Casillas, E.A.; Sanchez-Cordero, V.; Rivaldi, C.L.; Sarkar, S. Projected future distributions of vectors of Trypanosoma cruzi in North America under climate change scenarios. PLoS Negl. Trop. Dis., 2014, 8(5)e2818
[http://dx.doi.org/10.1371/journal.pntd.0002818] [PMID: 24831117]
[17]
Patz, J.A.; Graczyk, T.K.; Geller, N.; Vittor, A.Y. Effects of environmental change on emerging parasitic diseases. Int. J. Parasitol., 2000, 30(12-13), 1395-1405.
[http://dx.doi.org/10.1016/S0020-7519(00)00141-7] [PMID: 11113264]
[18]
Lafferty, K.D. The ecology of climate change and infectious diseases. Ecology, 2009, 90(4), 888-900.
[http://dx.doi.org/10.1890/08-0079.1] [PMID: 19449681]
[19]
Cazzulo, J.J.; Stoka, V.; Turk, V. Cruzipain, the major cysteine proteinase from the protozoan parasite Trypanosoma cruzi. Biol. Chem., 1997, 378(1), 1-10.
[PMID: 9049059]
[20]
da Silva, E.B.; do Nascimento Pereira, G.A.; Ferreira, R.S. Trypanosomal cysteine peptidases: Target validation and drug design strategies. In: Comprehensive Analysis of Parasite Biology: From Metabolism to Drug Discovery; Wiley- VCH Verlag GmbH & Co. KGaA, 2016; pp. 121-145.
[21]
McGrath, M.E.; Eakin, A.E.; Engel, J.C.; McKerrow, J.H.; Craik, C.S.; Fletterick, R.J. The crystal structure of cruzain: A therapeutic target for Chagas’ disease. J. Mol. Biol., 1995, 247(2), 251-259.
[http://dx.doi.org/10.1006/jmbi.1994.0137] [PMID: 7707373]
[22]
World Health Organization (WHO). Fact Sheet: World Malaria Report 2015. http://www.who.int/malaria/media/world-malaria-report-2015/en/ (Accessed September 01, 2016).
[23]
Rosenthal, P.J. Falcipains and other cysteine proteases of malaria parasites. Adv. Exp. Med. Biol., 2011, 712, 30-48.
[http://dx.doi.org/10.1007/978-1-4419-8414-2_3] [PMID: 21660657]
[24]
Asawamahasakda, W.; Ittarat, I.; Chang, C.C.; McElroy, P.; Meshnick, S.R. Effects of antimalarials and protease inhibitors on plasmodial hemozoin production. Mol. Biochem. Parasitol., 1994, 67(2), 183-191.
[http://dx.doi.org/10.1016/0166-6851(94)00128-6] [PMID: 7870123]
[25]
Gamboa de Domínguez, N.D.; Rosenthal, P.J. Cysteine proteinase inhibitors block early steps in hemoglobin degradation by cultured malaria parasites. Blood, 1996, 87(10), 4448-4454.
[PMID: 8639807]
[26]
Mane, U.R.; Gupta, R.C.; Nadkarni, S.S.; Giridhar, R.R.; Naik, P.P.; Yadav, M.R. Falcipain inhibitors as potential therapeutics for resistant strains of malaria: a patent review. Expert Opin. Ther. Pat., 2013, 23(2), 165-187.
[http://dx.doi.org/10.1517/13543776.2013.743992]
[27]
DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ., 2016, 47, 20-33.
[http://dx.doi.org/10.1016/j.jhealeco.2016.01.012] [PMID: 26928437]
[28]
Shenai, B.R.; Lee, B.J.; Alvarez-Hernandez, A.; Chong, P.Y.; Emal, C.D.; Neitz, R.J.; Roush, W.R.; Rosenthal, P.J. Structure-activity relationships for inhibition of cysteine protease activity and development of Plasmodium falciparum by peptidyl vinyl sulfones. Antimicrob. Agents Chemother., 2003, 47(1), 154-160.
[http://dx.doi.org/10.1128/AAC.47.1.154-160.2003] [PMID: 12499184]
[29]
Ripphausen, P.; Nisius, B.; Peltason, L.; Bajorath, J. Quo vadis, virtual screening? A comprehensive survey of prospective applications. J. Med. Chem., 2010, 53(24), 8461-8467.
[http://dx.doi.org/10.1021/jm101020z] [PMID: 20929257]
[30]
Wang, L.; Zhang, S.; Zhu, J.; Zhu, L.; Liu, X.; Shan, L.; Huang, J.; Zhang, W.; Li, H. Identification of diverse natural products as falcipain-2 inhibitors through structure-based virtual screening. Bioorg. Med. Chem. Lett., 2014, 24(5), 1261-1264.
[http://dx.doi.org/10.1016/j.bmcl.2014.01.074] [PMID: 24530004]
[31]
Chakka, S.K.; Kalamuddin, M.; Sundararaman, S.; Wei, L.; Mundra, S.; Mahesh, R.; Malhotra, P.; Mohmmed, A.; Kotra, L.P. Identification of novel class of falcipain-2 inhibitors as potential antimalarial agents. Bioorg. Med. Chem., 2015, 23(9), 2221-2240.
[http://dx.doi.org/10.1016/j.bmc.2015.02.062] [PMID: 25840796]
[32]
Shah, F.; Mukherjee, P.; Gut, J.; Legac, J.; Rosenthal, P.J.; Tekwani, B.L.; Avery, M.A. Identification of novel malarial cysteine protease inhibitors using structure-based virtual screening of a focused cysteine protease inhibitor library. J. Chem. Inf. Model., 2011, 51(4), 852-864.
[http://dx.doi.org/10.1021/ci200029y] [PMID: 21428453]
[33]
Wiggers, H.J.; Rocha, J.R.; Fernandes, W.B.; Sesti-Costa, R.; Carneiro, Z.A.; Cheleski, J.; da Silva, A.B.; Juliano, L.; Cezari, M.H.; Silva, J.S.; McKerrow, J.H.; Montanari, C.A. Non-peptidic cruzain inhibitors with trypanocidal activity discovered by virtual screening and in vitro assay. PLoS Negl. Trop. Dis., 2013, 7(8)e2370
[http://dx.doi.org/10.1371/journal.pntd.0002370] [PMID: 23991231]
[34]
Mugumbate, G.; Newton, A.S.; Rosenthal, P.J.; Gut, J.; Moreira, R.; Chibale, K.; Guedes, R.C. Novel anti-plasmodial hits identified by virtual screening of the ZINC database. J. Comput. Aided Mol. Des., 2013, 27(10), 859-871.
[http://dx.doi.org/10.1007/s10822-013-9685-z] [PMID: 24158745]
[35]
Rogers, K.E.; Keränen, H.; Durrant, J.D.; Ratnam, J.; Doak, A.; Arkin, M.R.; McCammon, J.A. Novel cruzain inhibitors for the treatment of Chagas’ disease. Chem. Biol. Drug Des., 2012, 80(3), 398-405.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01416.x] [PMID: 22613098]
[36]
Ferreira, R.S.; Simeonov, A.; Jadhav, A.; Eidam, O.; Mott, B.T.; Keiser, M.J.; McKerrow, J.H.; Maloney, D.J.; Irwin, J.J.; Shoichet, B.K. Complementarity between a docking and a high-throughput screen in discovering new cruzain inhibitors. J. Med. Chem., 2010, 53(13), 4891-4905.
[http://dx.doi.org/10.1021/jm100488w] [PMID: 20540517]
[37]
Shah, F.; Gut, J.; Legac, J.; Shivakumar, D.; Sherman, W.; Rosenthal, P.J.; Avery, M.A. Computer-aided drug design of falcipain inhibitors: virtual screening, structure-activity relationships, hydration site thermodynamics, and reactivity analysis. J. Chem. Inf. Model., 2012, 52(3), 696-710.
[http://dx.doi.org/10.1021/ci2005516] [PMID: 22332946]
[38]
Ferreira, R.S.; Dessoy, M.A.; Pauli, I.; Souza, M.L.; Krogh, R.; Sales, A.I.; Oliva, G.; Dias, L.C.; Andricopulo, A.D. Synthesis, biological evaluation, and structure-activity relationships of potent noncovalent and nonpeptidic cruzain inhibitors as anti-Trypanosoma cruzi agents. J. Med. Chem., 2014, 57(6), 2380-2392.
[http://dx.doi.org/10.1021/jm401709b] [PMID: 24533839]
[39]
Sabnis, Y.; Rosenthal, P.J.; Desai, P.; Avery, M.A. Homology modeling of falcipain-2: validation, de novo ligand design and synthesis of novel inhibitors. J. Biomol. Struct. Dyn., 2002, 19(5), 765-774.
[http://dx.doi.org/10.1080/07391102.2002.10506783] [PMID: 11922834]
[40]
Weldon, D.J.; Shah, F.; Chittiboyina, A.G.; Sheri, A.; Chada, R.R.; Gut, J.; Rosenthal, P.J.; Shivakumar, D.; Sherman, W.; Desai, P.; Jung, J.C.; Avery, M.A. Synthesis, biological evaluation, hydration site thermodynamics, and chemical reactivity analysis of α-keto substituted peptidomimetics for the inhibition of Plasmodium falciparum. Bioorg. Med. Chem. Lett., 2014, 24(5), 1274-1279.
[http://dx.doi.org/10.1016/j.bmcl.2014.01.062] [PMID: 24507921]
[41]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[42]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[43]
Kerr, I.D.; Lee, J.H.; Pandey, K.C.; Harrison, A.; Sajid, M.; Rosenthal, P.J.; Brinen, L.S. Structures of falcipain-2 and falcipain-3 bound to small molecule inhibitors: implications for substrate specificity. J. Med. Chem., 2009, 52(3), 852-857.
[http://dx.doi.org/10.1021/jm8013663] [PMID: 19128015]
[44]
Bruce-Chwatt, L.J. Three hundred and fifty years of the Peruvian fever bark. Br. Med. J. (Clin. Res. Ed.), 1988, 296(6635), 1486-1487.
[http://dx.doi.org/10.1136/bmj.296.6635.1486] [PMID: 3134079]
[45]
Jin, H.; Xu, Z.; Cui, K.; Zhang, T.; Lu, W.; Huang, J. Dietary flavonoids fisetin and myricetin: dual inhibitors of Plasmodium falciparum falcipain-2 and plasmepsin II. Fitoterapia, 2014, 94, 55-61.
[http://dx.doi.org/10.1016/j.fitote.2014.01.017] [PMID: 24468190]
[46]
Le Bonniec, S.; Deregnaucourt, C.; Redeker, V.; Banerjee, R.; Grellier, P.; Goldberg, D.E.; Schrével, J. Plasmepsin II, an acidic hemoglobinase from the Plasmodium falciparum food vacuole, is active at neutral pH on the host erythrocyte membrane skeleton. J. Biol. Chem., 1999, 274(20), 14218-14223.
[http://dx.doi.org/10.1074/jbc.274.20.14218] [PMID: 10318841]
[47]
Hanspal, M.; Dua, M.; Takakuwa, Y.; Chishti, A.H.; Mizuno, A. Plasmodium falciparum cysteine protease falcipain-2 cleaves erythrocyte membrane skeletal proteins at late stages of parasite development. Blood, 2002, 100(3), 1048-1054.
[http://dx.doi.org/10.1182/blood-2002-01-0101] [PMID: 12130521]
[48]
Dhawan, S.; Dua, M.; Chishti, A.H.; Hanspal, M. Ankyrin peptide blocks falcipain-2-mediated malaria parasite release from red blood cells. J. Biol. Chem., 2003, 278(32), 30180-30186.
[http://dx.doi.org/10.1074/jbc.M305132200] [PMID: 12775709]
[49]
Kerr, I.D.; Lee, J.H.; Farady, C.J.; Marion, R.; Rickert, M.; Sajid, M.; Pandey, K.C.; Caffrey, C.R.; Legac, J.; Hansell, E.; McKerrow, J.H.; Craik, C.S.; Rosenthal, P.J.; Brinen, L.S. Vinyl sulfones as antiparasitic agents and a structural basis for drug design. J. Biol. Chem., 2009, 284(38), 25697-25703.
[http://dx.doi.org/10.1074/jbc.M109.014340] [PMID: 19620707]
[50]
Chen, Y.T.; Brinen, L.S.; Kerr, I.D.; Hansell, E.; Doyle, P.S.; McKerrow, J.H.; Roush, W.R. In vitro and in vivo studies of the trypanocidal properties of WRR-483 against Trypanosoma cruzi. PLoS Negl. Trop. Dis., 2010, 4(9)e825
[http://dx.doi.org/10.1371/journal.pntd.0000825] [PMID: 20856868]
[51]
Jones, B.D.; Tochowicz, A.; Tang, Y.; Cameron, M.D.; McCall, L.I.; Hirata, K.; Siqueira-Neto, J.L.; Reed, S.L.; McKerrow, J.H.; Roush, W.R. Synthesis and evaluation of oxyguanidine analogues of the cysteine protease inhibitor WRR-483 against Cruzain. ACS Med. Chem. Lett., 2015, 7(1), 77-82.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00336] [PMID: 26819670]
[52]
Oliveira, R.; Newton, A.S.; Guedes, R.C.; Miranda, D.; Amewu, R.K.; Srivastava, A.; Gut, J.; Rosenthal, P.J.; O’Neill, P.M.; Ward, S.A.; Lopes, F.; Moreira, R. An endoperoxide-based hybrid approach to deliver falcipain inhibitors inside malaria parasites. ChemMedChem, 2013, 8(9), 1528-1536.
[http://dx.doi.org/10.1002/cmdc.201300202] [PMID: 23853126]
[53]
Oliveira, R.; Guedes, R.C.; Meireles, P.; Albuquerque, I.S.; Gonçalves, L.M.; Pires, E.; Bronze, M.R.; Gut, J.; Rosenthal, P.J.; Prudêncio, M.; Moreira, R.; O’Neill, P.M.; Lopes, F. Tetraoxane-pyrimidine nitrile hybrids as dual stage antimalarials. J. Med. Chem., 2014, 57(11), 4916-4923.
[http://dx.doi.org/10.1021/jm5004528] [PMID: 24824551]
[54]
Capela, R.; Oliveira, R.; Gonçalves, L.M.; Domingos, A.; Gut, J.; Rosenthal, P.J.; Lopes, F.; Moreira, R. Artemisinin-dipeptidyl vinyl sulfone hybrid molecules: design, synthesis and preliminary SAR for antiplasmodial activity and falcipain-2 inhibition. Bioorg. Med. Chem. Lett., 2009, 19(12), 3229-3232.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.100] [PMID: 19435664]
[55]
O’Neill, P.M.; Posner, G.H. A medicinal chemistry perspective on artemisinin and related endoperoxides. J. Med. Chem., 2004, 47(12), 2945-2964.
[http://dx.doi.org/10.1021/jm030571c] [PMID: 15163175]
[56]
Coslédan, F.; Fraisse, L.; Pellet, A.; Guillou, F.; Mordmüller, B.; Kremsner, P.G.; Moreno, A.; Mazier, D.; Maffrand, J.P.; Meunier, B. Selection of a trioxaquine as an antimalarial drug candidate. Proc. Natl. Acad. Sci. USA, 2008, 105(45), 17579-17584.
[http://dx.doi.org/10.1073/pnas.0804338105] [PMID: 18987321]
[57]
Capela, R.; Cabal, G.G.; Rosenthal, P.J.; Gut, J.; Mota, M.M.; Moreira, R.; Lopes, F.; Prudêncio, M. Design and evaluation of primaquine-artemisinin hybrids as a multistage antimalarial strategy. Antimicrob. Agents Chemother., 2011, 55(10), 4698-4706.
[http://dx.doi.org/10.1128/AAC.05133-11] [PMID: 21807973]
[58]
Slack, R.D.; Jacobine, A.M.; Posner, G.H. Antimalarial peroxides: Advances in drug discovery and design. MedChemComm, 2012, 3(3), 281-297.
[http://dx.doi.org/10.1039/c2md00277a]
[59]
Altmann, E.; Cowan-Jacob, S.W.; Missbach, M. Novel purine nitrile derived inhibitors of the cysteine protease cathepsin K. J. Med. Chem., 2004, 47(24), 5833-5836.
[http://dx.doi.org/10.1021/jm0493111] [PMID: 15537340]
[60]
Greenspan, P.D.; Clark, K.L.; Cowen, S.D.; McQuire, L.W.; Tommasi, R.A.; Farley, D.L.; Quadros, E.; Coppa, D.E.; Du, Z.; Fang, Z.; Zhou, H.; Doughty, J.; Toscano, K.T.; Wigg, A.M.; Zhou, S. N-arylaminonitriles as bioavailable peptidomimetic inhibitors of cathepsin B. Bioorg. Med. Chem. Lett., 2003, 13(22), 4121-4124.
[http://dx.doi.org/10.1016/j.bmcl.2003.08.006] [PMID: 14592520]
[61]
Mott, B.T.; Ferreira, R.S.; Simeonov, A.; Jadhav, A.; Ang, K.K.; Leister, W.; Shen, M.; Silveira, J.T.; Doyle, P.S.; Arkin, M.R.; McKerrow, J.H.; Inglese, J.; Austin, C.P.; Thomas, C.J.; Shoichet, B.K.; Maloney, D.J. Identification and optimization of inhibitors of Trypanosomal cysteine proteases: cruzain, rhodesain, and TbCatB. J. Med. Chem., 2010, 53(1), 52-60.
[http://dx.doi.org/10.1021/jm901069a] [PMID: 19908842]
[62]
Ehmke, V.; Heindl, C.; Rottmann, M.; Freymond, C.; Schweizer, W.B.; Brun, R.; Stich, A.; Schirmeister, T.; Diederich, F. Potent and selective inhibition of cysteine proteases from Plasmodium falciparum and Trypanosoma brucei. ChemMedChem, 2011, 6(2), 273-278.
[http://dx.doi.org/10.1002/cmdc.201000449] [PMID: 21275051]
[63]
Ehmke, V.; Quinsaat, J.E.; Rivera-Fuentes, P.; Heindl, C.; Freymond, C.; Rottmann, M.; Brun, R.; Schirmeister, T.; Diederich, F. Tuning and predicting biological affinity: aryl nitriles as cysteine protease inhibitors. Org. Biomol. Chem., 2012, 10(30), 5764-5768.
[http://dx.doi.org/10.1039/c2ob00034b] [PMID: 22336919]
[64]
World Health Organization (WHO). Schistosomiasis. http://www.who.int/schistosomiasis/en/ (Accessed September 02, 2016)
[65]
Jílková, A.; Rezácová, P.; Lepsík, M.; Horn, M.; Váchová, J.; Fanfrlík, J.; Brynda, J.; McKerrow, J.H.; Caffrey, C.R.; Mares, M. Structural basis for inhibition of cathepsin B drug target from the human blood fluke, Schistosoma mansoni. J. Biol. Chem., 2011, 286(41), 35770-35781.
[http://dx.doi.org/10.1074/jbc.M111.271304] [PMID: 21832058]
[66]
Fonseca, N.C.; da Cruz, L.F.; da Silva Villela, F.; do Nascimento Pereira, G.A.; de Siqueira-Neto, J.L.; Kellar, D.; Suzuki, B.M.; Ray, D.; de Souza, T.B.; Alves, R.J.; Sales Júnior, P.A.; Romanha, A.J.; Murta, S.M.; McKerrow, J.H.; Caffrey, C.R.; de Oliveira, R.B.; Ferreira, R.S. Synthesis of a sugar-based thiosemicarbazone series and structure-activity relationship versus the parasite cysteine proteases rhodesain, cruzain, and Schistosoma mansoni cathepsin B1. Antimicrob. Agents Chemother., 2015, 59(5), 2666-2677.
[http://dx.doi.org/10.1128/AAC.04601-14] [PMID: 25712353]
[67]
Olson, J.E.; Lee, G.K.; Semenov, A.; Rosenthal, P.J. Antimalarial effects in mice of orally administered peptidyl cysteine protease inhibitors. Bioorg. Med. Chem., 1999, 7(4), 633-638.
[http://dx.doi.org/10.1016/S0968-0896(99)00004-8] [PMID: 10353642]
[68]
Fanfrlík, J.; Brahmkshatriya, P.S.; Řezáč, J.; Jílková, A.; Horn, M.; Mareš, M.; Hobza, P.; Lepšík, M. Quantum mechanics-based scoring rationalizes the irreversible inactivation of parasitic Schistosoma mansoni cysteine peptidase by vinyl sulfone inhibitors. J. Phys. Chem. B, 2013, 117(48), 14973-14982.
[http://dx.doi.org/10.1021/jp409604n] [PMID: 24195769]
[69]
World Health Organization (WHO). Leishmaniasis.. http://www.who.int/leishmaniasis/en/ (Accessed September 02, 2016)
[70]
Schröder, J.; Noack, S.; Marhöfer, R.J.; Mottram, J.C.; Coombs, G.H.; Selzer, P.M. Identification of semicarbazones, thiosemicarbazones and triazine nitriles as inhibitors of Leishmania mexicana cysteine protease CPB. PLoS One, 2013, 8(10)e77460
[http://dx.doi.org/10.1371/journal.pone.0077460] [PMID: 24146999]
[71]
Du, X.; Guo, C.; Hansell, E.; Doyle, P.S.; Caffrey, C.R.; Holler, T.P.; McKerrow, J.H.; Cohen, F.E. Synthesis and structure-activity relationship study of potent trypanocidal thio semicarbazone inhibitors of the trypanosomal cysteine protease cruzain. J. Med. Chem., 2002, 45(13), 2695-2707.
[http://dx.doi.org/10.1021/jm010459j] [PMID: 12061873]
[72]
Vital, D.G.; Damasceno, F.S.; Rapado, L.N.; Silber, A.M.; Vilella, F.S.; Ferreira, R.S.; Maltarollo, V.G.; Trossini, G.H. Application of bioisosterism in design of the semicarbazone derivatives as cruzain inhibitors: A theoretical and experimental study. J. Biomol. Struct. Dyn., 2016, 1-16.
[PMID: 27064715]
[73]
Centers for Disease Control and Prevention (CDC). Parasites - Babesiosis. www.cdc.gov/parasites/babesiosis (Accessed September 04, 2016).
[74]
de Waal, D.T.; Combrink, M.P. Live vaccines against bovine babesiosis. Vet. Parasitol., 2006, 138(1-2), 88-96.
[http://dx.doi.org/10.1016/j.vetpar.2006.01.042] [PMID: 16504404]
[75]
Fish, L.; Leibovich, B.; Krigel, Y.; McElwain, T.; Shkap, V. Vaccination of cattle against B. bovis infection with live attenuated parasites and non-viable immunogens. Vaccine, 2008, 26(Suppl. 6), G29-G33.
[http://dx.doi.org/10.1016/j.vaccine.2008.09.070] [PMID: 19178890]
[76]
Schnittger, L.; Rodriguez, A.E.; Florin-Christensen, M.; Morrison, D.A. Babesia: a world emerging. Infect. Genet. Evol., 2012, 12(8), 1788-1809.
[http://dx.doi.org/10.1016/j.meegid.2012.07.004]
[77]
Okubo, K.; Yokoyama, N.; Govind, Y.; Alhassan, A.; Igarashi, I. Babesia bovis: Effects of cysteine protease inhibitors on in vitro growth. Exp. Parasitol., 2007, 117(2), 214-217.
[http://dx.doi.org/10.1016/j.exppara.2007.04.009] [PMID: 17543303]
[78]
Martins, T.M.; do Rosário, V.E.; Domingos, A. Identification of papain-like cysteine proteases from the bovine piroplasm Babesia bigemina and evolutionary relationship of piroplasms C1 family of cysteine proteases. Exp. Parasitol., 2011, 127(1), 184-194.
[http://dx.doi.org/10.1016/j.exppara.2010.07.012] [PMID: 20655912]
[79]
Pérez, B.; Antunes, S.; Gonçalves, L.M.; Domingos, A.; Gomes, J.R.; Gomes, P.; Teixeira, C. Toward the discovery of inhibitors of babesipain-1, a Babesia bigemina cysteine protease: In vitro evaluation, homology modeling and molecular docking studies. J. Comput. Aided Mol. Des., 2013, 27(9), 823-835.
[http://dx.doi.org/10.1007/s10822-013-9682-2] [PMID: 24129820]
[80]
Pérez, B.C.; Teixeira, C.; Figueiras, M.; Gut, J.; Rosenthal, P.J.; Gomes, J.R.; Gomes, P. Novel cinnamic acid/4-aminoquinoline conjugates bearing non-proteinogenic amino acids: towards the development of potential dual action antimalarials. Eur. J. Med. Chem., 2012, 54, 887-899.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.022] [PMID: 22683112]
[81]
Ndao, M.; Nath-Chowdhury, M.; Sajid, M.; Marcus, V.; Mashiyama, S.T.; Sakanari, J.; Chow, E.; Mackey, Z.; Land, K.M.; Jacobson, M.P.; Kalyanaraman, C.; McKerrow, J.H.; Arrowood, M.J.; Caffrey, C.R. A cysteine protease inhibitor rescues mice from a lethal Cryptosporidium parvum infection. Antimicrob. Agents Chemother., 2013, 57(12), 6063-6073.
[http://dx.doi.org/10.1128/AAC.00734-13] [PMID: 24060869]
[82]
Schiefer, I.T.; Tapadar, S.; Litosh, V.; Siklos, M.; Scism, R.; Wijewickrama, G.T.; Chandrasena, E.P.; Sinha, V.; Tavassoli, E.; Brunsteiner, M.; Fa’, M.; Arancio, O.; Petukhov, P.; Thatcher, G.R. Design, synthesis, and optimization of novel epoxide incorporating peptidomimetics as selective calpain inhibitors. J. Med. Chem., 2013, 56(15), 6054-6068.
[http://dx.doi.org/10.1021/jm4006719] [PMID: 23834438]
[83]
Borišek, J.; Vizovišek, M.; Sosnowski, P.; Turk, B.; Turk, D.; Mohar, B.; Novič, M. Development of N-(Functionalized benzoyl)-homocycloleucyl-glycinonitriles as Potent Cathepsin K Inhibitors. J. Med. Chem., 2015, 58(17), 6928-6937.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00746] [PMID: 26280490]
[84]
Grosche, P.; Sirockin, F.; Mac Sweeney, A.; Ramage, P.; Erbel, P.; Melkko, S.; Bernardi, A.; Hughes, N.; Ellis, D.; Combrink, K.D.; Jarousse, N.; Altmann, E. Structure-based design and optimization of potent inhibitors of the adenoviral protease. Bioorg. Med. Chem. Lett., 2015, 25(3), 438-443.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.057] [PMID: 25571794]
[85]
Zhai, Y.; Zhao, X.; Cui, Z.; Wang, M.; Wang, Y.; Li, L.; Sun, Q.; Yang, X.; Zeng, D.; Liu, Y.; Sun, Y.; Lou, Z.; Shang, L.; Yin, Z. Cyanohydrin as an anchoring group for potent and selective inhibitors of enterovirus 71 3C protease. J. Med. Chem., 2015, 58(23), 9414-9420.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01013] [PMID: 26571192]
[86]
World Health Organization (WHO). Fact sheet: Dementia.. http://www.who.int/mediacentre/factsheets/fs362/en/ (Accessed September 02, 2016)
[87]
Holtzman, D.M.; Mandelkow, E.; Selkoe, D.J. Alzheimer disease in 2020. Cold Spring Harb. Perspect. Med., 2012, 2(11)a011585
[http://dx.doi.org/10.1101/cshperspect.a011585] [PMID: 23125202]
[88]
Kidd, M. Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature, 1963, 197, 192-193.
[http://dx.doi.org/10.1038/197192b0] [PMID: 14032480]
[89]
Blennow, K.; de Leon, M.J.; Zetterberg, H. Alzheimer’s disease. Lancet, 2006, 368(9533), 387-403.
[http://dx.doi.org/10.1016/S0140-6736(06)69113-7] [PMID: 16876668]
[90]
Klein, W.L. Synaptotoxic amyloid-β oligomers: a molecular basis for the cause, diagnosis, and treatment of Alzheimer’s disease? J. Alzheimers Dis., 2013, 33(Suppl. 1), S49-S65.
[http://dx.doi.org/10.3233/JAD-2012-129039] [PMID: 22785404]
[91]
Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med., 2016, 8(6), 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[92]
Hook, V.Y.; Toneff, T.; Aaron, W.; Yasothornsrikul, S.; Bundey, R.; Reisine, T. Beta-amyloid peptide in regulated secretory vesicles of chromaffin cells: evidence for multiple cysteine proteolytic activities in distinct pathways for beta-secretase activity in chromaffin vesicles. J. Neurochem., 2002, 81(2), 237-256.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00794.x] [PMID: 12064471]
[93]
Hook, V.; Toneff, T.; Bogyo, M.; Greenbaum, D.; Medzihradszky, K.F.; Neveu, J.; Lane, W.; Hook, G.; Reisine, T. Inhibition of cathepsin B reduces beta-amyloid production in regulated secretory vesicles of neuronal chromaffin cells: evidence for cathepsin B as a candidate beta-secretase of Alzheimer’s disease. Biol. Chem., 2005, 386(9), 931-940.
[http://dx.doi.org/10.1515/BC.2005.108] [PMID: 16164418]
[94]
Hook, G.; Hook, V.Y.; Kindy, M. Cysteine protease inhibitors reduce brain beta-amyloid and beta-secretase activity in vivo and are potential Alzheimer’s disease therapeutics. Biol. Chem., 2007, 388(9), 979-983.
[http://dx.doi.org/10.1515/BC.2007.117] [PMID: 17696783]
[95]
Hook, V.; Hook, G.; Kindy, M. Pharmacogenetic features of cathepsin B inhibitors that improve memory deficit and reduce beta-amyloid related to Alzheimer’s disease. Biol. Chem., 2010, 391(8), 861-872.
[http://dx.doi.org/10.1515/bc.2010.110] [PMID: 20536395]
[96]
Hook, V.Y.; Kindy, M.; Hook, G. Inhibitors of cathepsin B improve memory and reduce beta-amyloid in transgenic Alzheimer disease mice expressing the wild-type, but not the Swedish mutant, beta-secretase site of the amyloid precursor protein. J. Biol. Chem., 2008, 283(12), 7745-7753.
[http://dx.doi.org/10.1074/jbc.M708362200] [PMID: 18184658]
[97]
Hook, G.; Hook, V.; Kindy, M. The cysteine protease inhibitor, E64d, reduces brain amyloid-β and improves memory deficits in Alzheimer’s disease animal models by inhibiting cathepsin B, but not BACE1, β-secretase activity. J. Alzheimers Dis., 2011, 26(2), 387-408.
[http://dx.doi.org/10.3233/JAD-2011-110101] [PMID: 21613740]
[98]
Hook, G.; Jacobsen, J.S.; Grabstein, K.; Kindy, M.; Hook, V. Cathepsin B is a New Drug Target for Traumatic Brain Injury Therapeutics: Evidence for E64d as a Promising Lead Drug Candidate. Front. Neurol., 2015, 6, 178.
[http://dx.doi.org/10.3389/fneur.2015.00178] [PMID: 26388830]
[99]
Biswas, N.; Rodriguez-Flores, J.L.; Courel, M.; Gayen, J.R.; Vaingankar, S.M.; Mahata, M.; Torpey, J.W.; Taupenot, L.; O’Connor, D.T.; Mahata, S.K. Cathepsin L colocalizes with chromogranin a in chromaffin vesicles to generate active peptides. Endocrinology, 2009, 150(8), 3547-3557.
[http://dx.doi.org/10.1210/en.2008-1613] [PMID: 19372204]
[100]
Funkelstein, L.; Beinfeld, M.; Minokadeh, A.; Zadina, J.; Hook, V. Unique biological function of cathepsin L in secretory vesicles for biosynthesis of neuropeptides. Neuropeptides, 2010, 44(6), 457-466.
[http://dx.doi.org/10.1016/j.npep.2010.08.003] [PMID: 21047684]
[101]
Hook, V.; Funkelstein, L.; Wegrzyn, J.; Bark, S.; Kindy, M.; Hook, G. Cysteine Cathepsins in the secretory vesicle produce active peptides: Cathepsin L generates peptide neurotransmitters and cathepsin B produces beta-amyloid of Alzheimer’s disease. Biochim. Biophys. Acta, 2012, 1824(1), 89-104.
[http://dx.doi.org/10.1016/j.bbapap.2011.08.015] [PMID: 21925292]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy