Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

iTRAQ为基础的APPsw的蛋白质组学分析,IND小鼠提供了深入了解阿尔茨海默病的早期变化

卷 14, 期 10, 2017

页: [1109 - 1122] 页: 14

弟呕挨: 10.2174/1567205014666170719165745

open access plus

摘要

背景:多种蛋白质被认为是阿尔茨海默病(AD)患者和小鼠模型的影像学、遗传学或蛋白质组学研究的潜在诊断标志物。然而,对于AD先兆诊断生物标志物仍在研究中,如在AD发病机制的分子变化的先兆。 目的:在本研究中,我们旨在分析APPSw早期的蛋白质组变化,IND小鼠,并对有趣的蛋白功能进行进一步研究。 方法:采用同位素标记相对和绝对定量(iTRAQ)与质谱联用的方法检测IND小鼠海马APPsw早期蛋白质组的变化。用定量逆转录聚合酶链反应(RT-PCR)和免疫印迹法进行进一步验证。最后,有趣的蛋白质β-血影蛋白 和 Rab3a APP转运和加工的功能由在N2a细胞中稳定表达的β-淀粉前体蛋白(APP)shRNA干扰测试。 结果:iTRAQ和RT-PCR结果显示,氧化应激,髓鞘形成,星形胶质细胞的激活,mTOR信号和Rab3-依赖的受体转运AD进展的早期阶段详细的分子改变。敲除β -spectrin 和 Rab3a最后导致增加受体片段的生成,说明β -spectrin 和 Rab3a在调节受体生成过程中扮演着关键角色。 结论:我们的研究首次揭示了AD小鼠模型早期海马组织蛋白质组的变化。除了进一步了解AD早期发病的分子改变和功能级联反应外,我们的发现还提高了潜在的生物标记物和AD早期治疗靶点的可能性。

关键词: iTRAQ,海马,前期症状,APPSw,Ind小鼠,APP/PS1小鼠,阿尔茨海默病

[1]
Sonkusare SK, Kaul CL, Ramarao P. Dementia of Alzheimer’s disease and other neurodegenerative disorders-memantine, a new hope. Pharmacol Res 51(1): 1-17. (2005).
[2]
Braak H, Braak E, Bohl J, Bratzke H. Evolution of Alzheimer’s disease related cortical lesions. J Neural Transm Suppl 54: 97-106. (1998).
[3]
Jack CR Jr, Petersen RC, O’Brien PC, Tangalos EG. MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 42(1): 183-8. (1992).
[4]
Poulin SP, Dautoff R, Morris JC, Barrett LF, Dickerson BC. Alzheimer’s Disease Neuroimaging I. Amygdala atrophy is prominent in early Alzheimer’s disease and relates to symptom severity. Psychiatry Res 194(1): 7-13. (2011).
[5]
Jack CR Jr, Petersen RC, Xu YC, Waring SC, O’Brien PC, Tangalos EG, et al. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 49(3): 786-94. (1997).
[6]
Braak H, Braak E. Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol Scand Suppl 165: 3-12. (1996).
[7]
Fox NC, Warrington EK, Freeborough PA, Hartikainen P, Kennedy AM, Stevens JM, et al. Presymptomatic hippocampal atrophy in Alzheimer’s disease. A longitudinal MRI study. Brain 119(Pt 6): 2001-7. (1996).
[8]
Andreasen N, Vanmechelen E, Van de Voorde A, Davidsson P, Hesse C, Tarvonen S, et al. Cerebrospinal fluid tau protein as a biochemical marker for Alzheimer’s disease: a community based follow up study. J Neurol Neurosurg Psychiatry 64(3): 298-305. (1998).
[9]
Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, et al. Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353(6347): 844-6. (1991).
[10]
Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2): 741-66. (2001).
[11]
Ikeuchi T, Dolios G, Kim SH, Wang R, Sisodia SS. Familial Alzheimer disease-linked presenilin 1 variants enhance production of both Abeta 1-40 and Abeta 1-42 peptides that are only partially sensitive to a potent aspartyl protease transition state inhibitor of “gamma-secretase”. J Biol Chem 278(9): 7010-8. (2003).
[12]
Jacobsen H, Reinhardt D, Brockhaus M, Bur D, Kocyba C, Kurt H, et al. The influence of endoproteolytic processing of familial Alzheimer’s disease presenilin 2 on abeta42 amyloid peptide formation. J Biol Chem 274(49): 35233-9. (1999).
[13]
Ashford JW. APOE genotype effects on Alzheimer’s disease onset and epidemiology. J Mol Neurosci 23(3): 157-65. (2004).
[14]
Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, et al. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 65(4): 403-13. (2009).
[15]
Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 5(3): 228-34. (2006).
[16]
Diamandis EP, Yousef GM, Petraki C, Soosaipillai AR. Human kallikrein 6 as a biomarker of alzheimer’s disease. Clin Biochem 33(8): 663-7. (2000).
[17]
Schonberger SJ, Edgar PF, Kydd R, Faull RL, Cooper GJ. Proteomic analysis of the brain in Alzheimer’s disease: molecular phenotype of a complex disease process. Proteomics 1(12): 1519-28. (2001).
[18]
Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12): 1154-69. (2004).
[19]
Kolla V, Jeno P, Moes S, Tercanli S, Lapaire O, Choolani M, et al. Quantitative proteomics analysis of maternal plasma in Down syndrome pregnancies using isobaric tagging reagent (iTRAQ). J Biomed Biotechnol 2010: 952047. (2010).
[20]
Zhou L, Beuerman RW, Chan CM, Zhao SZ, Li XR, Yang H, et al. Identification of tear fluid biomarkers in dry eye syndrome using iTRAQ quantitative proteomics. J Proteome Res 8(11): 4889-905. (2009).
[21]
Manavalan A, Mishra M, Feng L, Sze SK, Akatsu H, Heese K. Brain site-specific proteome changes in aging-related dementia. Exp Mol Med 45(9): e39. (2013).
[22]
Song F, Poljak A, Kochan NA, Raftery M, Brodaty H, Smythe GA, et al. Plasma protein profiling of Mild Cognitive Impairment and Alzheimer’s disease using iTRAQ quantitative proteomics. Proteome Sci 12(1): 5. (2014).
[23]
Martin B, Brenneman R, Becker KG, Gucek M, Cole RN, Maudsley S. iTRAQ analysis of complex proteome alterations in 3xTgAD Alzheimer’s mice: understanding the interface between physiology and disease. PLoS One 3(7): e2750. (2008).
[24]
Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, et al. High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20(11): 4050-8. (2000).
[25]
Fu Y, Rusznak Z, Kwok JB, Kim WS, Paxinos G. Age-dependent alterations of the hippocampal cell composition and proliferative potential in the hAbetaPPSwInd-J20 mouse. J Alzheimers Dis 41(4): 1177-92. (2014).
[26]
Karl T, Bhatia S, Cheng D, Kim WS, Garner B. Cognitive phenotyping of amyloid precursor protein transgenic J20 mice. Behav Brain Res 228(2): 392-7. (2012).
[27]
Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, et al. Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 451(7179): 720-4. (2008).
[28]
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Gene Ontol Consortium. Nat Genet 25(1): 25-9. (2000).
[29]
Consortium TGO. Gene Ontology Consortium. going forward. Nucleic Acids Res 43(Database issue): D1049-56. (2015).
[30]
Cho RJ, Campbell MJ. Transcription, genomes, function. Trends Genet 16(9): 409-15. (2000).
[31]
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4): 772-80. (2013).
[32]
Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9): 1189-91. (2009).
[33]
Moodley KK, Chan D. The hippocampus in neurodegenerative disease. Front Neurol Neurosci 34: 95-108. (2014).
[34]
Desai MK, Sudol KL, Janelsins MC, Mastrangelo MA, Frazer ME, Bowers WJ. Triple-transgenic Alzheimer’s disease mice exhibit region-specific abnormalities in brain myelination patterns prior to appearance of amyloid and tau pathology. Glia 57(1): 54-65. (2009).
[35]
Power JH, Asad S, Chataway TK, Chegini F, Manavis J, Temlett JA, et al. Peroxiredoxin 6 in human brain: molecular forms, cellular distribution and association with Alzheimer’s disease pathology. Acta Neuropathol 115(6): 611-22. (2008).
[36]
Donmez G, Outeiro TF. SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 5(3): 344-52. (2013).
[37]
de Mendonca E, Salazar Alcala E, Fernandez-Mestre M. Role of genes GSTM1, GSTT1, and MnSOD in the development of late-onset Alzheimer disease and their relationship with APOE*4. Neurologia 31(8): 535-42. (2016).
[38]
Piacentini S, Polimanti R, Squitti R, Ventriglia M, Cassetta E, Vernieri F, et al. GSTM1 null genotype as risk factor for late-onset Alzheimer’s disease in Italian patients. J Neurol Sci 317(1-2): 137-40. (2012).
[39]
Pinhel MA, Nakazone MA, Cacao JC, Piteri RC, Dantas RT, Godoy MF, et al. Glutathione S-transferase variants increase susceptibility for late-onset Alzheimer’s disease: association study and relationship with apolipoprotein E epsilon4 allele. Clin Chem Lab Med 46(4): 439-45. (2008).
[40]
Chadwick W, Brenneman R, Martin B, Maudsley S. Complex and multidimensional lipid raft alterations in a murine model of Alzheimer’s disease. Int J Alzheimers Dis 2010: 604792. (2010).
[41]
Farina F, Botto L, Chinello C, Cunati D, Magni F, Masserini M, et al. Characterization of prion protein-enriched domains, isolated from rat cerebellar granule cells in culture. J Neurochem 110(3): 1038-48. (2009).
[42]
Rockenstein E, Hansen LA, Mallory M, Trojanowski JQ, Galasko D, Masliah E. Altered expression of the synuclein family mRNA in Lewy body and Alzheimer’s disease. Brain Res 914(1-2): 48-56. (2001).
[43]
Beyer K, Domingo-Sabat M, Santos C, Tolosa E, Ferrer I, Ariza A. The decrease of beta-synuclein in cortical brain areas defines a molecular subgroup of dementia with Lewy bodies. Brain 133(Pt 12): 3724-33. (2010).
[44]
Cirillo C, Capoccia E, Iuvone T, Cuomo R, Sarnelli G, Steardo L, et al. S100B Inhibitor Pentamidine Attenuates Reactive Gliosis and Reduces Neuronal Loss in a Mouse Model of Alzheimer’s Disease. BioMed Res Int 2015: 508342. (2015).
[45]
Mori T, Asano T, Town T. Targeting S100B in Cerebral Ischemia and in Alzheimer’s Disease. Cardiovasc Psychiatry Neurol 2010. (2010).
[46]
Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA 86(19): 7611-5. (1989).
[47]
Choi J, Levey AI, Weintraub ST, Rees HD, Gearing M, Chin LS, et al. Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases. J Biol Chem 279(13): 13256-64. (2004).
[48]
Ferrer-Acosta Y, Rodriguez-Cruz EN, Orange F, De Jesus-Cortes H, Madera B, Vaquer-Alicea J, et al. EFhd2 is a novel amyloid protein associated with pathological tau in Alzheimer’s disease. J Neurochem 125(6): 921-31. (2013).
[49]
Szodorai A, Kuan YH, Hunzelmann S, Engel U, Sakane A, Sasaki T, et al. APP anterograde transport requires Rab3A GTPase activity for assembly of the transport vesicle. J Neurosci 29(46): 14534-44. (2009).
[50]
Rosengren LE, Wikkelso C, Hagberg L. A sensitive ELISA for glial fibrillary acidic protein: application in CSF of adults. J Neurosci Methods 51(2): 197-204. (1994).
[51]
Fukuyama R, Izumoto T, Fushiki S. The cerebrospinal fluid level of glial fibrillary acidic protein is increased in cerebrospinal fluid from Alzheimer’s disease patients and correlates with severity of dementia. Eur Neurol 46(1): 35-8. (2001).
[52]
Crols R, Saerens J, Noppe M, Lowenthal A. Increased GFAp levels in CSF as a marker of organicity in patients with Alzheimer’s disease and other types of irreversible chronic organic brain syndrome. J Neurol 233(3): 157-60. (1986).
[53]
Colangelo AM, Alberghina L, Papa M. Astrogliosis as a therapeutic target for neurodegenerative diseases. Neurosci Lett 565: 59-64. (2014).
[54]
Sihag RK, Cataldo AM. Brain beta-spectrin is a component of senile plaques in Alzheimer’s disease. Brain Res 743(1-2): 249-57. (1996).
[55]
Masliah E, Iimoto DS, Saitoh T, Hansen LA, Terry RD. Increased immunoreactivity of brain spectrin in Alzheimer disease: a marker for synapse loss? Brain Res 531(1-2): 36-44. (1990).
[56]
Cai Y, Zhu HX, Li JM, Luo XG, Patrylo PR, Rose GM, et al. Age-related intraneuronal elevation of alphaII-spectrin breakdown product SBDP120 in rodent forebrain accelerates in 3xTg-AD mice. PLoS One 7(6): e37599. (2012).
[57]
Ayala-Grosso C, Tam J, Roy S, Xanthoudakis S, Da Costa D, Nicholson DW, et al. Caspase-3 cleaved spectrin colocalizes with neurofilament-immunoreactive neurons in Alzheimer’s disease. Neuroscience 141(2): 863-74. (2006).
[58]
Peterson C, Vanderklish P, Seubert P, Cotman C, Lynch G. Increased spectrin proteolysis in fibroblasts from aged and Alzheimer donors. Neurosci Lett 121(1-2): 239-43. (1991).
[59]
Zhu HX, Xue ZQ, Qiu WY, Zeng ZJ, Dai JP, Ma C, et al. Age-related intraneuronal accumulation of alphaII-spectrin breakdown product SBDP120 in the human cerebrum is enhanced in Alzheimer’s disease. Exp Gerontol 69: 43-52. (2015).
[60]
Yan XX, Jeromin A. Spectrin breakdown products (SBDPs) as potential biomarkers for neurodegenerative diseases. Curr Transl Geriatr Exp Gerontol Rep 1(2): 85-93. (2012).
[61]
Kobeissy FH, Liu MC, Yang Z, Zhang Z, Zheng W, Glushakova O, et al. Degradation of betaII-spectrin protein by calpain-2 and caspase-3 under neurotoxic and traumatic brain injury conditions. Mol Neurobiol 52(1): 696-709. (2015).
[62]
Sakaguchi G, Orita S, Naito A, Maeda M, Igarashi H, Sasaki T, et al. A novel brain-specific isoform of beta spectrin: isolation and its interaction with Munc13. Biochem Biophys Res Commun 248(3): 846-51. (1998).
[63]
Featherstone DE, Davis WS, Dubreuil RR, Broadie K. Drosophila alpha- and beta-spectrin mutations disrupt presynaptic neurotransmitter release. J Neurosci 21(12): 4215-24. (2001).
[64]
Wang YP, Wang ZF, Zhang YC, Tian Q, Wang JZ. Effect of amyloid peptides on serum withdrawal-induced cell differentiation and cell viability. Cell Res 14(6): 467-72. (2004).
[65]
Geppert M, Bolshakov VY, Siegelbaum SA, Takei K, De Camilli P, Hammer RE, et al. The role of Rab3A in neurotransmitter release. Nature 369(6480): 493-7. (1994).
[66]
Geppert M, Goda Y, Stevens CF, Sudhof TC. The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion. Nature 387(6635): 810-4. (1997).
[67]
Xu K, Zhong G, Zhuang X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339(6118): 452-6. (2013).
[68]
Baines AJ, Lu HC, Bennett PM. The Protein 4.1 family: hub proteins in animals for organizing membrane proteins. Biochim Biophys Acta 1838(2): 605-19. (2014).
[69]
Seabrook TJ, Bloom JK, Iglesias M, Spooner ET, Walsh DM, Lemere CA. Species-specific immune response to immunization with human versus rodent A beta peptide. Neurobiol Aging 25(9): 1141-51. (2004).
[70]
Lopez-Toledano MA, Shelanski ML. Increased neurogenesis in young transgenic mice overexpressing human APP(Sw, Ind). J Alzheimers Dis 12(3): 229-40. (2007).
[71]
Pomilio C, Pavia P, Gorojod RM, Vinuesa A, Alaimo A, Galvan V, et al. Glial alterations from early to late stages in a model of Alzheimer’s disease: evidence of autophagy involvement in Abeta internalization. Hippocampus 26(2): 194-210. (2016).
[72]
Borchelt DR, Ratovitski T, van Lare J, Lee MK, Gonzales V, Jenkins NA, et al. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19(4): 939-45. (1997).
[73]
Kraft AW, Hu X, Yoon H, Yan P, Xiao Q, Wang Y, et al. Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB J 27(1): 187-98. (2013).
[74]
Moolman DL, Vitolo OV, Vonsattel JP, Shelanski ML. Dendrite and dendritic spine alterations in Alzheimer models. J Neurocytol 33(3): 377-87. (2004).
[75]
Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ. Using mice to model Alzheimer’s dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet 5: 88. (2014).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy