Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Mechanisms of Action, Resistance and Toxicity of Insecticides Targeting GABA Receptors

Author(s): Steven D. Buckingham, Makoto Ihara, David B. Sattelle and Kazuhiko Matsuda*

Volume 24, Issue 27, 2017

Page: [2935 - 2945] Pages: 11

DOI: 10.2174/0929867324666170613075736

Price: $65

Abstract

Background: γ-Aminobutyric acid (GABA) receptors play a central role in fast inhibitory neurotransmission in insects. Several classes of insecticides targeting insect GABA-gated chloride channels have been developed. The important resistant to dieldrin GABA receptor subunit (RDL) has been used to investigate insecticide sites of action using radioligands, electrophysiology and site-directed mutagenesis. Although this important subunit readily forms robust functional homomeric receptors when expressed, alternative splicing and RNA A-to-I editing can generate diverse forms of the receptor.

Methods: We have reviewed studies on native and recombinant insect GABA-gated chloride channels, their interactions with ligands acting at orthosteric and allosteric sites and their interactions with insecticides. Since some GABA receptor modulators act on L-glutamate-gated chloride channels, some comparisons are included.

Results: The actions on GABA-gated chloride channels of polychlorocycloalkanes, cyclodienes, macrocyclic lactones, phenylpyrazoles, isoxazolines, and metadiamides are described and the mechanisms of action of members of these insecticide classes are addressed. Mutations that lead to resistance are discussed as they can be important in developing field diagnostic tests. Toxicity issues relating to insecticides targeting GABA-gated chloride channels are also addressed.

An overview of all major insecticide classes targeting insect GABA-gated chloride channels has enhanced our understanding of these important receptors and their insecticide binding sites. However, the subunit composition of native GABA receptors remains unknown and studies to clarify this are needed. Also, the precise sites of action of the recently introduced isoxazolines and meta-diamides will be of interest to pursue.

Keywords: Polychlorocycloalkanes, cyclodienes, macrocyclic lactones, phenylpyrazoles, isoxazolines, metadiamides, insecticide, resistance, toxicity, GABA receptor.


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy