Abstract
Background: Blood-brain barrier (BBB) separates the neural tissue from circulating blood because of its high selectivity. This study focused on the in vitro application of magnetic nanoparticles to deliver Tp53 as a gene of interest to glioblastoma (U87) cells across a simulated BBB model that comprised KB cells.
Material and Method: After magnetic and non-magnetic nanoparticles were internalized by KB cells, their location in these cells was examined by transmission electron microscopy. Transfection efficiency of DNA to U87 cells was evaluated by fluorescence microscopy, real time PCR, flowcytometry, and Western immuno-blotting. When a magnetic field was applied, a large number of magnetic nanoparticles accumulated in KB cells, appearing as black dots scattered in the cytoplasm of cells. Fluorescence microscope examination showed that transfection of the DNA to U87 target cells was highest in cells treated with magnetic nanoparticles and exposed to a magnetic field. Also it was reflected in significantly increased mRNA level while the p53 protein level was decreased. Conclusion: It could be concluded that a significant increase in total apoptosis was induced in cells by magnetic nanoparticles, coupled with exposure to a magnetic force (p ≤0.01) as compared with cells that were not exposed to magnetism.Keywords: Blood-brain barrier, brain cancer, magnetic nanoparticles, molecular medicine, p53 signaling pathway, targeted therapy.
Current Gene Therapy
Title:Glioblastoma Targeted Gene Therapy Based on pEGFP/p53-Loaded Superparamagnetic Iron Oxide Nanoparticles
Volume: 17 Issue: 1
Author(s): Touba Eslaminejad, Seyed Noureddin Nematollahi-Mahani and Mehdi Ansari*
Affiliation:
- Kerman University of Medical Sciences kerman, Kerman,Iran
Keywords: Blood-brain barrier, brain cancer, magnetic nanoparticles, molecular medicine, p53 signaling pathway, targeted therapy.
Abstract: Background: Blood-brain barrier (BBB) separates the neural tissue from circulating blood because of its high selectivity. This study focused on the in vitro application of magnetic nanoparticles to deliver Tp53 as a gene of interest to glioblastoma (U87) cells across a simulated BBB model that comprised KB cells.
Material and Method: After magnetic and non-magnetic nanoparticles were internalized by KB cells, their location in these cells was examined by transmission electron microscopy. Transfection efficiency of DNA to U87 cells was evaluated by fluorescence microscopy, real time PCR, flowcytometry, and Western immuno-blotting. When a magnetic field was applied, a large number of magnetic nanoparticles accumulated in KB cells, appearing as black dots scattered in the cytoplasm of cells. Fluorescence microscope examination showed that transfection of the DNA to U87 target cells was highest in cells treated with magnetic nanoparticles and exposed to a magnetic field. Also it was reflected in significantly increased mRNA level while the p53 protein level was decreased. Conclusion: It could be concluded that a significant increase in total apoptosis was induced in cells by magnetic nanoparticles, coupled with exposure to a magnetic force (p ≤0.01) as compared with cells that were not exposed to magnetism.Export Options
About this article
Cite this article as:
Eslaminejad Touba, Nematollahi-Mahani Noureddin Seyed and Ansari Mehdi*, Glioblastoma Targeted Gene Therapy Based on pEGFP/p53-Loaded Superparamagnetic Iron Oxide Nanoparticles, Current Gene Therapy 2017; 17 (1) . https://dx.doi.org/10.2174/1566523217666170605115829
DOI https://dx.doi.org/10.2174/1566523217666170605115829 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Angiotensin II Receptor Blocker: Possibility of Antitumor Agent for Prostate Cancer
Mini-Reviews in Medicinal Chemistry Hypoxia-Inducible Factors and Sphingosine 1-Phosphate Signaling
Anti-Cancer Agents in Medicinal Chemistry Subject Index to Volume 3
Current Gene Therapy Imaging Primary Brain Tumors by Single-Photon Emission Computerized Tomography (SPECT) with Technetium-99m Sestamibi (MIBI) and Tetrofosmin
Current Medical Imaging New Indications for Established Drugs: Combined Tumor-Stroma-Targeted Cancer Therapy with PPARγ Agonists, COX-2 Inhibitors, mTOR Antagonists and Metronomic Chemotherapy
Current Cancer Drug Targets Procarbazine – A Traditional Drug in the Treatment of Malignant Gliomas
Current Medicinal Chemistry Fluorescence-Guided Surgery for Malignant Glioma: A Review on Aminolevulinic Acid Induced Protoporphyrin IX Photodynamic Diagnostic in Brain Tumors
Current Medical Imaging Bacteria and Bacterial Toxins as Therapeutic Agents for Solid Tumors
Current Cancer Drug Targets Advanced Neuroimaging Techniques in the Management of Glioblastoma Multiforme
Current Radiopharmaceuticals Novel Fluorine Boron Hybrid Complex as Potential Antiproliferative Drugs on Colorectal Cancer Cell Line
Anti-Cancer Agents in Medicinal Chemistry Development of Novel Therapeutics Targeting Isocitrate Dehydrogenase Mutations in Cancer
Current Topics in Medicinal Chemistry Expression of Opioid Receptors During Peripheral Inflammation
Current Topics in Medicinal Chemistry A Glance Over the Cannabinoid Machinery to Design New Anti- Angiogenic Compounds
Mini-Reviews in Medicinal Chemistry Functional Role of miR-34 Family in Human Cancer
Current Drug Targets Radiolabeled Nanoparticles for Cancer Diagnosis and Therapy
Anti-Cancer Agents in Medicinal Chemistry Cerenkov Luminescence Imaging at a Glance
Current Molecular Imaging (Discontinued) Vandetanib, A Dual Inhibitor of VEGFR and EGFR Tyrosine Kinase Activity
Current Cancer Therapy Reviews Microenvironment and Brain Tumor Stem Cell Maintenance: Impact of the Niche
Anti-Cancer Agents in Medicinal Chemistry Potential Role of Natural Compounds as Anti-Angiogenic Agents in Cancer
Current Vascular Pharmacology Radiolabeled Small Molecule Inhibitors of VEGFR - Recent Advances
Current Pharmaceutical Design