Review Article

糖尿病对心脏和血管疾病的影响:钙信号的作用

卷 26, 期 22, 2019

页: [4166 - 4177] 页: 12

弟呕挨: 10.2174/0929867324666170523140925

价格: $65

摘要

糖尿病和心血管疾病(CVD)的病理生理学是复杂和多因素的。 与糖尿病相关的心肌病的特定类型,称为糖尿病性心肌病(DCM),被认为是在没有冠状动脉粥样硬化和高血压的情况下,糖尿病患者心脏结构和功能重塑的无症状进展。 换句话说,特别是在糖尿病患者中存在心脏病也被称为糖尿病心脏病。 本文回顾了糖尿病对心脏和血管床的影响,重点研究了涉及氧化应激,炎症,内皮功能障碍和钙稳态变化的分子机制,以及其他机制。 了解这些机制将有助于识别和治疗糖尿病患者的CVD,并计划有效的策略来减轻DCM对这些患者的影响。

关键词: 心血管疾病,糖尿病,糖尿病性心肌病,钙稳态,氧化应激,内皮功能障碍。

[1]
Diabetes Atlas, I.D.F. IDF Diabetes Atlas, 7th edn. Brussels, Belgium: International Diabetes Federation, 2015.Available at. http://www.diabetesatlas.org
[2]
Rahelić, D. [7th Edition of Idf Diabetes Atlas--Call for Immediate Action Lijec. Vjesn., 2016, 138(1-2), 57-58.
[PMID: 27290816]
[3]
Cho, N.H. Q&A: Five questions on the 2015 IDF Diabetes Atlas. Diabetes Res. Clin. Pract., 2016, 115, 157-159.
[http://dx.doi.org/10.1016/j.diabres.2016.04.048] [PMID: 27242128]
[4]
Rask-Madsen, C.; King, G.L. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab., 2013, 17(1), 20-33.
[http://dx.doi.org/10.1016/j.cmet.2012.11.012] [PMID: 23312281]
[5]
Hamby, R.I.; Zoneraich, S.; Sherman, L. Diabetic cardiomyopathy. JAMA, 1974, 229(13), 1749-1754.
[http://dx.doi.org/10.1001/jama.1974.03230510023016] [PMID: 4278055]
[6]
Avogaro, A.; Vigili de Kreutzenberg, S.; Negut, C.; Tiengo, A.; Scognamiglio, R. Diabetic cardiomyopathy: a metabolic perspective. Am. J. Cardiol., 2004, 93(8A), 13A-16A.
[http://dx.doi.org/10.1016/j.amjcard.2003.11.003] [PMID: 15094099]
[7]
Trost, S.U.; Belke, D.D.; Bluhm, W.F.; Meyer, M.; Swanson, E.; Dillmann, W.H. Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes, 2002, 51(4), 1166-1171.
[http://dx.doi.org/10.2337/diabetes.51.4.1166] [PMID: 11916940]
[8]
Miki, T.; Yuda, S.; Kouzu, H.; Miura, T. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail. Rev., 2013, 18(2), 149-166.
[http://dx.doi.org/10.1007/s10741-012-9313-3] [PMID: 22453289]
[9]
Marwick, T.H. Diabetic heart disease. Heart, 2006, 92(3), 296-300.
[PMID: 16159978]
[10]
Bers, D.M. Calcium cycling and signaling in cardiac myocytes. Annu. Rev. Physiol., 2008, 70, 23-49.
[http://dx.doi.org/10.1146/annurev.physiol.70.113006.100455] [PMID: 17988210]
[11]
Rubler, S.; Dlugash, J.; Yuceoglu, Y.Z.; Kumral, T.; Branwood, A.W.; Grishman, A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am. J. Cardiol., 1972, 30(6), 595-602.
[http://dx.doi.org/10.1016/0002-9149(72)90595-4] [PMID: 4263660]
[12]
Belke, D.D.; Swanson, E.A.; Dillmann, W.H. Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes, 2004, 53(12), 3201-3208.
[http://dx.doi.org/10.2337/diabetes.53.12.3201] [PMID: 15561951]
[13]
Ernande, L.; Derumeaux, G. Diabetic cardiomyopathy: myth or reality? Arch. Cardiovasc. Dis., 2012, 105(4), 218-225.
[http://dx.doi.org/10.1016/j.acvd.2011.11.007] [PMID: 22633296]
[14]
Pereira, L.; Matthes, J.; Schuster, I.; Valdivia, H.H.; Herzig, S.; Richard, S.; Gómez, A.M. Mechanisms of [Ca2+]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes, 2006, 55(3), 608-615.
[http://dx.doi.org/10.2337/diabetes.55.03.06.db05-1284] [PMID: 16505222]
[15]
Hamblin, M.; Friedman, D.B.; Hill, S.; Caprioli, R.M.; Smith, H.M.; Hill, M.F. Alterations in the diabetic myocardial proteome coupled with increased myocardial oxidative stress underlies diabetic cardiomyopathy. J. Mol. Cell. Cardiol., 2007, 42(4), 884-895.
[http://dx.doi.org/10.1016/j.yjmcc.2006.12.018] [PMID: 17320100]
[16]
Nunes, S.; Soares, E.; Pereira, F.; Reis, F. The role of inflammation in diabetic cardiomyopathy. Int. J. Interferon Cytokine Mediat. Res., 2012, 4(1), 59-73.
[17]
Ding, F.; Yu, L.; Wang, M.; Xu, S.; Xia, Q.; Fu, G. O-GlcNAcylation involvement in high glucose-induced cardiac hypertrophy via ERK1/2 and cyclin D2. Amino Acids, 2013, 45(2), 339-349.
[http://dx.doi.org/10.1007/s00726-013-1504-2] [PMID: 23665912]
[18]
Kayama, Y.; Raaz, U.; Jagger, A.; Adam, M.; Schellinger, I.N.; Sakamoto, M.; Suzuki, H.; Toyama, K.; Spin, J.M.; Tsao, P.S. Diabetic cardiovascular disease induced by oxidative stress. Int. J. Mol. Sci., 2015, 16(10), 25234-25263.
[http://dx.doi.org/10.3390/ijms161025234] [PMID: 26512646]
[19]
Braunwald, E. Biomarkers in heart failure. N. Engl. J. Med., 2008, 358(20), 2148-2159.
[http://dx.doi.org/10.1056/NEJMra0800239] [PMID: 18480207]
[20]
Fernández-Velasco, M.; Ruiz-Hurtado, G.; Gómez, A.M.; Rueda, A. Ca(2+) handling alterations and vascular dysfunction in diabetes. Cell Calcium, 2014, 56(5), 397-407.
[http://dx.doi.org/10.1016/j.ceca.2014.08.007] [PMID: 25218935]
[21]
Choi, K.M.; Zhong, Y.; Hoit, B.D.; Grupp, I.L.; Hahn, H.; Dilly, K.W.; Guatimosim, S.; Lederer, W.J.; Matlib, M.A. Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in Type 1 diabetic rats. Am. J. Physiol. Heart Circ. Physiol., 2002, 283(4), H1398-H1408.
[http://dx.doi.org/10.1152/ajpheart.00313.2002] [PMID: 12234790]
[22]
Peng, X.; Chen, R.; Wu, Y.; Huang, B.; Tang, C.; Chen, J.; Wang, Q.; Wu, Q.; Yang, J.; Qiu, H.; Jiang, Q. PPARγ-PI3K/AKT-NO signal pathway is involved in cardiomyocyte hypertrophy induced by high glucose and insulin. J. Diabetes Complications, 2015, 29(6), 755-760.
[http://dx.doi.org/10.1016/j.jdiacomp.2015.04.012] [PMID: 26045205]
[23]
Liu, Q.; Wang, S.; Cai, L. Diabetic cardiomyopathy and its mechanisms: Role of oxidative stress and damage. J. Diabetes Investig., 2014, 5(6), 623-634.
[http://dx.doi.org/10.1111/jdi.12250] [PMID: 25422760]
[24]
Cesselli, D.; Jakoniuk, I.; Barlucchi, L.; Beltrami, A.P.; Hintze, T.H.; Nadal-Ginard, B.; Kajstura, J.; Leri, A.; Anversa, P. Oxidative stress-mediated cardiac cell death is a major determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy. Circ. Res., 2001, 89(3), 279-286.
[http://dx.doi.org/10.1161/hh1501.094115] [PMID: 11485979]
[25]
He, X.; Kan, H.; Cai, L.; Ma, Q. Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes. J. Mol. Cell. Cardiol., 2009, 46(1), 47-58.
[http://dx.doi.org/10.1016/j.yjmcc.2008.10.007] [PMID: 19007787]
[26]
Candido, R.; Forbes, J.M.; Thomas, M.C.; Thallas, V.; Dean, R.G.; Burns, W.C.; Tikellis, C.; Ritchie, R.H.; Twigg, S.M.; Cooper, M.E.; Burrell, L.M. A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ. Res., 2003, 92(7), 785-792.
[http://dx.doi.org/10.1161/01.RES.0000065620.39919.20] [PMID: 12623881]
[27]
Bidasee, K.R.; Nallani, K.; Yu, Y.; Cocklin, R.R.; Zhang, Y.; Wang, M.; Dincer, U.D.; Besch, H.R. Jr. Chronic diabetes increases advanced glycation end products on cardiac ryanodine receptors/calcium-release channels. Diabetes, 2003, 52(7), 1825-1836.
[http://dx.doi.org/10.2337/diabetes.52.7.1825] [PMID: 12829653]
[28]
Zhao, J.; Randive, R.; Stewart, J.A. Molecular mechanisms of AGE/RAGE-mediated fibrosis in the diabetic heart. World J. Diabetes, 2014, 5(6), 860-867.
[http://dx.doi.org/10.4239/wjd.v5.i6.860] [PMID: 25512788]
[29]
Russo, I.; Frangogiannis, N.G. Diabetes-associated cardiac fibrosis: Cellular effectors, molecular mechanisms and therapeutic opportunities. J. Mol. Cell. Cardiol., 2016, 90, 84-93.
[http://dx.doi.org/10.1016/j.yjmcc.2015.12.011] [PMID: 26705059]
[30]
Battiprolu, P.K.; Lopez-Crisosto, C.; Wang, Z.V.; Nemchenko, A.; Lavandero, S.; Hill, J.A. Diabetic cardiomyopathy and metabolic remodeling of the heart. Life Sci., 2013, 92(11), 609-615.
[http://dx.doi.org/10.1016/j.lfs.2012.10.011] [PMID: 23123443]
[31]
Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Blaha, M.J.; Dai, S.; Ford, E.S.; Fox, C.S.; Franco, S.; Fullerton, H.J.; Gillespie, C.; Hailpern, S.M.; Heit, J.A.; Howard, V.J.; Huffman, M.D.; Judd, S.E.; Kissela, B.M.; Kittner, S.J.; Lackland, D.T.; Lichtman, J.H.; Lisabeth, L.D.; Mackey, R.H.; Magid, D.J.; Marcus, G.M.; Marelli, A.; Matchar, D.B.; McGuire, D.K.; Mohler, E.R. III; Moy, C.S.; Mussolino, M.E.; Neumar, R.W.; Nichol, G.; Pandey, D.K.; Paynter, N.P.; Reeves, M.J.; Sorlie, P.D.; Stein, J.; Towfighi, A.; Turan, T.N.; Virani, S.S.; Wong, N.D.; Woo, D.; Turner, M.B. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation, 2014, 129(3), e28-e292.
[http://dx.doi.org/10.1161/01.cir.0000441139.02102.80] [PMID: 24352519]
[32]
Cai, L.; Kang, Y.J. Cell death and diabetic cardiomyopathy. Cardiovasc. Toxicol., 2003, 3(3), 219-228.
[http://dx.doi.org/10.1385/CT:3:3:219] [PMID: 14555788]
[33]
Cai, L.; Li, W.; Wang, G.; Guo, L.; Jiang, Y.; Kang, Y.J. Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes, 2002, 51(6), 1938-1948.
[http://dx.doi.org/10.2337/diabetes.51.6.1938] [PMID: 12031984]
[34]
Fiordaliso, F.; Li, B.; Latini, R.; Sonnenblick, E.H.; Anversa, P.; Leri, A.; Kajstura, J. Myocyte death in streptozotocin-induced diabetes in rats in angiotensin II- dependent. Lab. Invest., 2000, 80(4), 513-527.
[http://dx.doi.org/10.1038/labinvest.3780057] [PMID: 10780668]
[35]
van Hoeven, K.H.; Factor, S.M. A comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive-diabetic heart disease. Circulation, 1990, 82(3), 848-855.
[http://dx.doi.org/10.1161/01.CIR.82.3.848] [PMID: 2394006]
[36]
Fischer, V.W.; Barner, H.B.; Larose, L.S. Pathomorphologic aspects of muscular tissue in diabetes mellitus. Hum. Pathol., 1984, 15(12), 1127-1136.
[http://dx.doi.org/10.1016/S0046-8177(84)80307-X] [PMID: 6238897]
[37]
Tang, M.; Zhang, W.; Lin, H.; Jiang, H.; Dai, H.; Zhang, Y. High glucose promotes the production of collagen types I and III by cardiac fibroblasts through a pathway dependent on extracellular-signal-regulated kinase 1/2. Mol. Cell. Biochem., 2007, 301(1-2), 109-114.
[http://dx.doi.org/10.1007/s11010-006-9401-6] [PMID: 17206378]
[38]
van Heerebeek, L.; Hamdani, N.; Handoko, M.L.; Falcao-Pires, I.; Musters, R.J.; Kupreishvili, K.; Ijsselmuiden, A.J.; Schalkwijk, C.G.; Bronzwaer, J.G.; Diamant, M.; Borbély, A.; van der Velden, J.; Stienen, G.J.; Laarman, G.J.; Niessen, H.W.; Paulus, W.J. Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation, 2008, 117(1), 43-51.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.728550] [PMID: 18071071]
[39]
Way, K.J.; Isshiki, K.; Suzuma, K.; Yokota, T.; Zvagelsky, D.; Schoen, F.J.; Sandusky, G.E.; Pechous, P.A.; Vlahos, C.J.; Wakasaki, H.; King, G.L. Expression of connective tissue growth factor is increased in injured myocardium associated with protein kinase C beta2 activation and diabetes. Diabetes, 2002, 51(9), 2709-2718.
[http://dx.doi.org/10.2337/diabetes.51.9.2709] [PMID: 12196463]
[40]
Fang, Z.Y.; Prins, J.B.; Marwick, T.H. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr. Rev., 2004, 25(4), 543-567.
[http://dx.doi.org/10.1210/er.2003-0012] [PMID: 15294881]
[41]
Zhou, G.; Li, X.; Hein, D.W.; Xiang, X.; Marshall, J.P.; Prabhu, S.D.; Cai, L. Metallothionein suppresses angiotensin II-induced nicotinamide adenine dinucleotide phosphate oxidase activation, nitrosative stress, apoptosis, and pathological remodeling in the diabetic heart. J. Am. Coll. Cardiol., 2008, 52(8), 655-666.
[http://dx.doi.org/10.1016/j.jacc.2008.05.019] [PMID: 18702970]
[42]
Brilla, C.G.; Scheer, C.; Rupp, H. Renin-angiotensin system and myocardial collagen matrix: modulation of cardiac fibroblast function by angiotensin II type 1 receptor antagonism. Journal of hypertension. Supplement : official journal of the International Society of Hypertension, 1997, 15(6), S13-19.
[http://dx.doi.org/10.1097/00004872-199715066-00004]
[43]
Kota, S.K.; Kota, S.K.; Jammula, S.; Panda, S.; Modi, K.D. Effect of diabetes on alteration of metabolism in cardiac myocytes: therapeutic implications. Diabetes Technol. Ther., 2011, 13(11), 1155-1160.
[http://dx.doi.org/10.1089/dia.2011.0120] [PMID: 21751873]
[44]
Fabiato, A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am. J. Physiol., 1983, 245(1), C1-C14.
[http://dx.doi.org/10.1152/ajpcell.1983.245.1.C1] [PMID: 6346892]
[45]
Bers, D.M. Cardiac excitation-contraction coupling. Nature, 2002, 415(6868), 198-205.
[http://dx.doi.org/10.1038/415198a] [PMID: 11805843]
[46]
Lee, S.L.; Ostadalova, I.; Kolar, F.; Dhalla, N.S. Alterations in Ca(2+)-channels during the development of diabetic cardiomyopathy. Mol. Cell. Biochem., 1992, 109(2), 173-179.
[PMID: 1320733]
[47]
Lu, Z.; Ballou, L.M.; Jiang, Y.P.; Cohen, I.S.; Lin, R.Z. Restoration of defective L-type Ca2+ current in cardiac myocytes of type 2 diabetic db/db mice by Akt and PKC-ι. J. Cardiovasc. Pharmacol., 2011, 58(4), 439-445.
[http://dx.doi.org/10.1097/FJC.0b013e318228e68c] [PMID: 21753738]
[48]
Shao, C.H.; Rozanski, G.J.; Patel, K.P.; Bidasee, K.R. Dyssynchronous (non-uniform) Ca2+ release in myocytes from streptozotocin-induced diabetic rats. J. Mol. Cell. Cardiol., 2007, 42(1), 234-246.
[http://dx.doi.org/10.1016/j.yjmcc.2006.08.018] [PMID: 17027851]
[49]
Yaras, N.; Ugur, M.; Ozdemir, S.; Gurdal, H.; Purali, N.; Lacampagne, A.; Vassort, G.; Turan, B. Effects of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2+ homeostasis in rat heart. Diabetes, 2005, 54(11), 3082-3088.
[http://dx.doi.org/10.2337/diabetes.54.11.3082] [PMID: 16249429]
[50]
Zhao, S.M.; Wang, Y.L.; Guo, C.Y.; Chen, J.L.; Wu, Y.Q. Progressive decay of Ca2+ homeostasis in the development of diabetic cardiomyopathy. Cardiovasc. Diabetol., 2014, 13, 75.
[http://dx.doi.org/10.1186/1475-2840-13-75] [PMID: 24712865]
[51]
Graham, S.; Gorin, Y.; Abboud, H.E.; Ding, M.; Lee, D.Y.; Shi, H.; Ding, Y.; Ma, R. Abundance of TRPC6 protein in glomerular mesangial cells is decreased by ROS and PKC in diabetes. Am. J. Physiol. Cell Physiol., 2011, 301(2), C304-C315.
[http://dx.doi.org/10.1152/ajpcell.00014.2011] [PMID: 21525431]
[52]
Wei, Z.; Wang, L.; Han, J.; Song, J.; Yao, L.; Shao, L.; Sun, Z.; Zheng, L. Decreased expression of transient receptor potential vanilloid 1 impaires the postischemic recovery of diabetic mouse hearts. Circulation journal : official journal of the Japanese Circulation Society, 2009, 73(6), 1127- 1132.
[http://dx.doi.org/10.1253/circj.CJ-08-0945]
[53]
Daskoulidou, N.; Zeng, B.; Berglund, L.M.; Jiang, H.; Chen, G.L.; Kotova, O.; Bhandari, S.; Ayoola, J.; Griffin, S.; Atkin, S.L.; Gomez, M.F.; Xu, S.Z. High glucose enhances store-operated calcium entry by upregulating ORAI/STIM via calcineurin-NFAT signalling. J. Mol. Med. (Berl.), 2015, 93(5), 511-521.
[http://dx.doi.org/10.1007/s00109-014-1234-2] [PMID: 25471481]
[54]
Freichel, M.; Schweig, U.; Stauffenberger, S.; Freise, D.; Schorb, W.; Flockerzi, V. Store-operated cation channels in the heart and cells of the cardiovascular system. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 1999, 9(4-5), 270-283.
[http://dx.doi.org/10.1159/000016321]
[55]
Eder, P.; Molkentin, J.D. TRPC channels as effectors of cardiac hypertrophy. Circ. Res., 2011, 108(2), 265-272.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.225888] [PMID: 21252153]
[56]
Collins, H.E.; Zhu-Mauldin, X.; Marchase, R.B.; Chatham, J.C. STIM1/Orai1-mediated SOCE: current perspectives and potential roles in cardiac function and pathology. Am. J. Physiol. Heart Circ. Physiol., 2013, 305(4), H446-H458.
[http://dx.doi.org/10.1152/ajpheart.00104.2013] [PMID: 23792674]
[57]
Rosado, J.A.; Diez, R.; Smani, T.; Jardín, I. STIM and orai1 variants in store-operated calcium entry. Front. Pharmacol., 2016, 6, 325.
[http://dx.doi.org/10.3389/fphar.2015.00325] [PMID: 26793113]
[58]
Domínguez-Rodríguez, A.; Ruiz-Hurtado, G.; Sabourin, J.; Gómez, A.M.; Alvarez, J.L.; Benitah, J.P. Proarrhythmic effect of sustained EPAC activation on TRPC3/4 in rat ventricular cardiomyocytes. J. Mol. Cell. Cardiol., 2015, 87, 74-78.
[http://dx.doi.org/10.1016/j.yjmcc.2015.07.002] [PMID: 26219954]
[59]
Makarewich, C.A.; Zhang, H.; Davis, J.; Correll, R.N.; Trappanese, D.M.; Hoffman, N.E.; Troupes, C.D.; Berretta, R.M.; Kubo, H.; Madesh, M.; Chen, X.; Gao, E.; Molkentin, J.D.; Houser, S.R. Transient receptor potential channels contribute to pathological structural and functional remodeling after myocardial infarction. Circ. Res., 2014, 115(6), 567-580.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.303831] [PMID: 25047165]
[60]
Gao, H.; Wang, F.; Wang, W.; Makarewich, C.A.; Zhang, H.; Kubo, H.; Berretta, R.M.; Barr, L.A.; Molkentin, J.D.; Houser, S.R. Ca(2+) influx through L-type Ca(2+) channels and transient receptor potential channels activates pathological hypertrophy signaling. J. Mol. Cell. Cardiol., 2012, 53(5), 657-667.
[http://dx.doi.org/10.1016/j.yjmcc.2012.08.005] [PMID: 22921230]
[61]
Watanabe, H.; Murakami, M.; Ohba, T.; Takahashi, Y.; Ito, H. TRP channel and cardiovascular disease. Pharmacol. Ther., 2008, 118(3), 337-351.
[http://dx.doi.org/10.1016/j.pharmthera.2008.03.008] [PMID: 18508125]
[62]
Pang, Y.; Hunton, D.L.; Bounelis, P.; Marchase, R.B. Hyperglycemia inhibits capacitative calcium entry and hypertrophy in neonatal cardiomyocytes. Diabetes, 2002, 51(12), 3461-3467.
[http://dx.doi.org/10.2337/diabetes.51.12.3461] [PMID: 12453900]
[63]
Zhu-Mauldin, X.; Marsh, S.A.; Zou, L.; Marchase, R.B.; Chatham, J.C. Modification of STIM1 by O-linked N-acetylglucosamine (O-GlcNAc) attenuates store-operated calcium entry in neonatal cardiomyocytes. J. Biol. Chem., 2012, 287(46), 39094-39106.
[http://dx.doi.org/10.1074/jbc.M112.383778] [PMID: 22992728]
[64]
Song, J.X.; Wang, L.H.; Yao, L.; Xu, C.; Wei, Z.H.; Zheng, L.R. Impaired transient receptor potential vanilloid 1 in streptozotocin-induced diabetic hearts. Int. J. Cardiol., 2009, 134(2), 290-292.
[http://dx.doi.org/10.1016/j.ijcard.2007.12.081] [PMID: 18378339]
[65]
Sowers, J.R.; Epstein, M. Diabetes mellitus and associated hypertension, vascular disease, and nephropathy. An update. Hypertension, 1995, 26(6 Pt 1), 869-879.
[http://dx.doi.org/10.1161/01.HYP.26.6.869] [PMID: 7490142]
[66]
Calver, A.; Collier, J.; Vallance, P. Inhibition and stimulation of nitric oxide synthesis in the human forearm arterial bed of patients with insulin-dependent diabetes. J. Clin. Invest., 1992, 90(6), 2548-2554.
[http://dx.doi.org/10.1172/JCI116149] [PMID: 1469103]
[67]
Michiels, C. Endothelial cell functions. J. Cell. Physiol., 2003, 196(3), 430-443.
[http://dx.doi.org/10.1002/jcp.10333] [PMID: 12891700]
[68]
Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiol. Rev., 2013, 93(1), 137-188.
[http://dx.doi.org/10.1152/physrev.00045.2011] [PMID: 23303908]
[69]
Potenza, M.A.; Gagliardi, S.; Nacci, C.; Carratu’, M.R.; Montagnani, M. Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. Curr. Med. Chem., 2009, 16(1), 94-112.
[http://dx.doi.org/10.2174/092986709787002853] [PMID: 19149564]
[70]
Bhargava, P.; Lee, C.H. Role and function of macrophages in the metabolic syndrome. Biochem. J., 2012, 442(2), 253-262.
[http://dx.doi.org/10.1042/BJ20111708] [PMID: 22329799]
[71]
Sasongko, M.B.; Wong, T.Y.; Jenkins, A.J.; Nguyen, T.T.; Shaw, J.E.; Wang, J.J. Circulating markers of inflammation and endothelial function, and their relationship to diabetic retinopathy. Diabet. Med., 2015, 32(5), 686-691.
[http://dx.doi.org/10.1111/dme.12640] [PMID: 25407692]
[72]
Polat, S.B.; Ugurlu, N.; Aslan, N.; Cuhaci, N.; Ersoy, R.; Cakir, B. Evaluation of biochemical and clinical markers of endothelial dysfunction and their correlation with urinary albumin excretion in patients with type 1 diabetes mellitus. Arch. Endocrinol. Metab., 2016, 60(2), 117-124.
[http://dx.doi.org/10.1590/2359-3997000000116] [PMID: 26886090]
[73]
Zeiher, A.M.; Fisslthaler, B.; Schray-Utz, B.; Busse, R. Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ. Res., 1995, 76(6), 980-986.
[http://dx.doi.org/10.1161/01.RES.76.6.980] [PMID: 7758169]
[74]
Mohamed, A.K.; Bierhaus, A.; Schiekofer, S.; Tritschler, H.; Ziegler, R.; Nawroth, P.P. The role of oxidative stress and NF-kappaB activation in late diabetic complications. Biofactors, 1999, 10(2-3), 157-167.
[http://dx.doi.org/10.1002/biof.5520100211] [PMID: 10609877]
[75]
Cruz, N.G.; Sousa, L.P.; Sousa, M.O.; Pietrani, N.T.; Fernandes, A.P.; Gomes, K.B. The linkage between inflammation and Type 2 diabetes mellitus. Diabetes Res. Clin. Pract., 2013, 99(2), 85-92.
[http://dx.doi.org/10.1016/j.diabres.2012.09.003] [PMID: 23245808]
[76]
Ayhan, H.; Kasapkara, H.A.; Aslan, A.N.; Durmaz, T.; Keleş, T.; Akçay, M.; Akar Bayram, N.; Baştuğ, S.; Bilen, E.; Sarı, C.; Bozkurt, E. Relationship of neutrophil-to-lymphocyte ratio with aortic stiffness in type 1 diabetes mellitus. Can. J. Diabetes, 2015, 39(4), 317-321.
[http://dx.doi.org/10.1016/j.jcjd.2015.01.004] [PMID: 25797110]
[77]
Li, Y.; Ni, J.; Guo, R.; Li, W. In Patients with Coronary Artery Disease and Type 2 Diabetes, SIRT1 Expression in Circulating Mononuclear Cells Is Associated with Levels of Inflammatory Cytokines but Not with Coronary Lesions. BioMed Res. Int., 2016.20168734827
[http://dx.doi.org/10.1155/2016/8734827] [PMID: 27123454]
[78]
Tiruppathi, C.; Minshall, R.D.; Paria, B.C.; Vogel, S.M.; Malik, A.B. Role of Ca2+ signaling in the regulation of endothelial permeability. Vascul. Pharmacol., 2002, 39(4-5), 173-185.
[http://dx.doi.org/10.1016/S1537-1891(03)00007-7] [PMID: 12747958]
[79]
Yao, X.; Garland, C.J. Recent developments in vascular endothelial cell transient receptor potential channels. Circ. Res., 2005, 97(9), 853-863.
[http://dx.doi.org/10.1161/01.RES.0000187473.85419.3e] [PMID: 16254217]
[80]
Zou, M.; Dong, H.; Meng, X.; Cai, C.; Li, C.; Cai, S.; Xue, Y. Store-operated Ca2+ entry plays a role in HMGB1-induced vascular endothelial cell hyperpermeability. PLoS One, 2015, 10(4)e0123432
[http://dx.doi.org/10.1371/journal.pone.0123432] [PMID: 25884983]
[81]
Félétou, M.; Vanhoutte, P.M. The alternative: EDHF. J. Mol. Cell. Cardiol., 1999, 31(1), 15-22.
[http://dx.doi.org/10.1006/jmcc.1998.0840] [PMID: 10072712]
[82]
Cohen, R.A.; Adachi, T. Nitric-oxide-induced vasodilatation: regulation by physiologic s-glutathiolation and pathologic oxidation of the sarcoplasmic endoplasmic reticulum calcium ATPase. Trends Cardiovasc. Med., 2006, 16(4), 109-114.
[http://dx.doi.org/10.1016/j.tcm.2006.02.001] [PMID: 16713532]
[83]
Ding, H.; Triggle, C.R. Endothelial dysfunction in diabetes: multiple targets for treatment. Pflugers Arch., 2010, 459(6), 977-994.
[http://dx.doi.org/10.1007/s00424-010-0807-3] [PMID: 20238124]
[84]
Basha, B.; Samuel, S.M.; Triggle, C.R.; Ding, H. Endothelial dysfunction in diabetes mellitus: possible involvement of endoplasmic reticulum stress? Exp. Diabetes Res., 2012.2012481840
[http://dx.doi.org/10.1155/2012/481840] [PMID: 22474423]
[85]
Shi, Y.; Vanhoutte, P.M. Reactive oxygen-derived free radicals are key to the endothelial dysfunction of diabetes. J. Diabetes, 2009, 1(3), 151-162.
[http://dx.doi.org/10.1111/j.1753-0407.2009.00030.x] [PMID: 20923534]
[86]
Mokhtar, S.S.; Vanhoutte, P.M.; Leung, S.W.; Yusof, M.I.; Wan Sulaiman, W.A.; Mat Saad, A.Z.; Suppian, R.; Rasool, A.H. Endothelium dependent hyperpolarization-type relaxation compensates for attenuated nitric oxide-mediated responses in subcutaneous arteries of diabetic patients. Nitric oxide : biology and chemistry / official journal of the Nitric Oxide Society, 2016, 53, 35-44.
[http://dx.doi.org/10.1016/j.niox.2015.12.007]
[87]
Tamareille, S.; Mignen, O.; Capiod, T.; Rücker-Martin, C.; Feuvray, D. High glucose-induced apoptosis through store-operated calcium entry and calcineurin in human umbilical vein endothelial cells. Cell Calcium, 2006, 39(1), 47-55.
[http://dx.doi.org/10.1016/j.ceca.2005.09.008] [PMID: 16243395]
[88]
Sheikh, A.Q.; Hurley, J.R.; Huang, W.; Taghian, T.; Kogan, A.; Cho, H.; Wang, Y.; Narmoneva, D.A. Diabetes alters intracellular calcium transients in cardiac endothelial cells. PLoS One, 2012, 7(5)e36840
[http://dx.doi.org/10.1371/journal.pone.0036840] [PMID: 22590623]
[89]
Bishara, N.B.; Ding, H. Glucose enhances expression of TRPC1 and calcium entry in endothelial cells. Am. J. Physiol. Heart Circ. Physiol., 2010, 298(1), H171-H178.
[http://dx.doi.org/10.1152/ajpheart.00699.2009] [PMID: 19855058]
[90]
Tiruppathi, C.; Freichel, M.; Vogel, S.M.; Paria, B.C.; Mehta, D.; Flockerzi, V.; Malik, A.B. Impairment of store-operated Ca2+ entry in TRPC4(-/-) mice interferes with increase in lung microvascular permeability. Circ. Res., 2002, 91(1), 70-76.
[http://dx.doi.org/10.1161/01.RES.0000023391.40106.A8] [PMID: 12114324]
[91]
Wang, R.; Wu, Y.; Tang, G.; Wu, L.; Hanna, S.T. Altered L-type Ca(2+) channel currents in vascular smooth muscle cells from experimental diabetic rats. Am. J. Physiol. Heart Circ. Physiol., 2000, 278(3), H714-H722.
[http://dx.doi.org/10.1152/ajpheart.2000.278.3.H714] [PMID: 10710338]
[92]
Nobe, K.; Takenouchi, Y.; Kasono, K.; Hashimoto, T.; Honda, K. Two types of overcontraction are involved in intrarenal artery dysfunction in type II diabetic mouse. J. Pharmacol. Exp. Ther., 2014, 351(1), 77-86.
[http://dx.doi.org/10.1124/jpet.114.216747] [PMID: 25085043]
[93]
Barbagallo, M.; Shan, J.; Pang, P.K.; Resnick, L.M. Glucose-induced alterations of cytosolic free calcium in cultured rat tail artery vascular smooth muscle cells. J. Clin. Invest., 1995, 95(2), 763-767.
[http://dx.doi.org/10.1172/JCI117724] [PMID: 7860758]
[94]
Pinho, J.F.; Medeiros, M.A.; Capettini, L.S.; Rezende, B.A.; Campos, P.P.; Andrade, S.P.; Cortes, S.F.; Cruz, J.S.; Lemos, V.S. Phosphatidylinositol 3-kinase-δ up-regulates L-type Ca2+ currents and increases vascular contractility in a mouse model of type 1 diabetes. Br. J. Pharmacol., 2010, 161(7), 1458-1471.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00955.x] [PMID: 20942845]
[95]
Okon, E.B.; Szado, T.; Laher, I.; McManus, B.; van Breemen, C. Augmented contractile response of vascular smooth muscle in a diabetic mouse model. J. Vasc. Res., 2003, 40(6), 520-530.
[http://dx.doi.org/10.1159/000075238] [PMID: 14646372]
[96]
Pannirselvam, M.; Wiehler, W.B.; Anderson, T.; Triggle, C.R. Enhanced vascular reactivity of small mesenteric arteries from diabetic mice is associated with enhanced oxidative stress and cyclooxygenase products. Br. J. Pharmacol., 2005, 144(7), 953-960.
[http://dx.doi.org/10.1038/sj.bjp.0706121] [PMID: 15685205]
[97]
Navedo, M.F.; Takeda, Y.; Nieves-Cintrón, M.; Molkentin, J.D.; Santana, L.F. Elevated Ca2+ sparklet activity during acute hyperglycemia and diabetes in cerebral arterial smooth muscle cells. Am. J. Physiol. Cell Physiol., 2010, 298(2), C211-C220.
[http://dx.doi.org/10.1152/ajpcell.00267.2009] [PMID: 19846755]
[98]
Beech, D.J. Ion channel switching and activation in smooth-muscle cells of occlusive vascular diseases. Biochem. Soc. Trans., 2007, 35(Pt 5), 890-894.
[http://dx.doi.org/10.1042/BST0350890] [PMID: 17956239]
[99]
Chung, A.W.; Au Yeung, K.; Chum, E.; Okon, E.B.; van Breemen, C. Diabetes modulates capacitative calcium entry and expression of transient receptor potential canonical channels in human saphenous vein. Eur. J. Pharmacol., 2009, 613(1-3), 114-118.
[http://dx.doi.org/10.1016/j.ejphar.2009.04.029] [PMID: 19393642]
[100]
Mita, M.; Ito, K.; Taira, K.; Nakagawa, J.; Walsh, M.P.; Shoji, M. Attenuation of store-operated Ca2+ entry and enhanced expression of TRPC channels in caudal artery smooth muscle from Type 2 diabetic Goto-Kakizaki rats. Clin. Exp. Pharmacol. Physiol., 2010, 37(7), 670-678.
[http://dx.doi.org/10.1111/j.1440-1681.2010.05373.x] [PMID: 20337661]
[101]
Evans, J.F.; Lee, J.H.; Ragolia, L. Ang-II-induced Ca(2+) influx is mediated by the 1/4/5 subgroup of the transient receptor potential proteins in cultured aortic smooth muscle cells from diabetic Goto-Kakizaki rats. Mol. Cell. Endocrinol., 2009, 302(1), 49-57.
[http://dx.doi.org/10.1016/j.mce.2008.12.004] [PMID: 19135126]
[102]
Chaudhari, S.; Ma, R. Store-operated calcium entry and diabetic complications. Exp. Biol. Med. (Maywood), 2016, 241(4), 343-352.
[http://dx.doi.org/10.1177/1535370215609693] [PMID: 26468167]
[103]
McCormick, L.M.; Heck, P.M.; Ring, L.S.; Kydd, A.C.; Clarke, S.J.; Hoole, S.P.; Dutka, D.P. Glucagon-like peptide-1 protects against ischemic left ventricular dysfunction during hyperglycemia in patients with coronary artery disease and type 2 diabetes mellitus. Cardiovasc. Diabetol., 2015, 14, 102.
[http://dx.doi.org/10.1186/s12933-015-0259-3] [PMID: 26253538]
[104]
Díaz, I.; Smani, T. New insights into the mechanisms underlying vascular and cardiac effects of urocortin. Curr. Vasc. Pharmacol., 2013, 11(4), 457-464.
[http://dx.doi.org/10.2174/1570161111311040009] [PMID: 23905640]
[105]
Adão, R.; Santos-Ribeiro, D.; Rademaker, M.T.; Leite-Moreira, A.F.; Brás-Silva, C. Urocortin 2 in cardiovascular health and disease. Drug Discov. Today, 2015, 20(7), 906-914.
[http://dx.doi.org/10.1016/j.drudis.2015.02.012] [PMID: 25748088]
[106]
Liu, X.; Liu, C.; Li, J.; Zhang, X.; Song, F.; Xu, J. Urocortin attenuates myocardial fibrosis in diabetic rats via the Akt/GSK-3β signaling pathway. Endocr. Res., 2016, 41(2), 148-157.
[http://dx.doi.org/10.3109/07435800.2015.1094489] [PMID: 26934363]
[107]
Ruiz-Salmeron, R.; de la Cuesta-Diaz, A.; Constantino-Bermejo, M.; Pérez-Camacho, I.; Marcos-Sánchez, F.; Hmadcha, A.; Soria, B. Angiographic demonstration of neoangiogenesis after intra-arterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischemia. Cell Transplant., 2011, 20(10), 1629-1639.
[http://dx.doi.org/10.3727/096368910X0177] [PMID: 22289660]
[108]
Soria, B.; Montanya, E.; Martín, F.; Hmadcha, A. A Role for the host in the roadmap to diabetes stem cell therapy. Diabetes, 2016, 65(5), 1155-1157.
[http://dx.doi.org/10.2337/dbi16-0003] [PMID: 27208184]
[109]
Liu, M.; Chen, H.; Jiang, J.; Zhang, Z.; Wang, C.; Zhang, N.; Dong, L.; Hu, X.; Zhu, W.; Yu, H.; Wang, J. Stem cells and diabetic cardiomyopathy: from pathology to therapy. Heart Fail. Rev., 2016, 21(6), 723-736.
[http://dx.doi.org/10.1007/s10741-016-9565-4] [PMID: 27221074]
[110]
Escacena, N.; Quesada-Hernández, E.; Capilla-Gonzalez, V.; Soria, B.; Hmadcha, A. Bottlenecks in the efficient use of advanced therapy medicinal products based on mesenchymal stromal cells. Stem Cells Int., 2015, 2015895714
[http://dx.doi.org/10.1155/2015/895714] [PMID: 26273307]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy