Review Article

饮食模式和植物生物活性化合物对水通道蛋白的调节

卷 26, 期 19, 2019

页: [3457 - 3470] 页: 14

弟呕挨: 10.2174/0929867324666170523123010

价格: $65

摘要

健康的饮食习惯和生物活性化合物的补充可以作为简单,容易的干预措施来预防,减轻或治愈临床疾病,尤其是在退行性和慢性疾病方面。 近年来,越来越多的证据表明水通道蛋白(AQPs)是在人体中广泛表达的一系列膜通道蛋白,是某些食物营养物质和植物化学化合物发挥有益作用的潜在靶标。 在这里,我们概述了有关健康饮食习惯和植物多酚对AQP调节的影响。

关键词: 营养保健品,多酚,功能食品,代谢综合症,肠道菌群,水通道蛋白。

[1]
Agre, P. Aquaporin water channels (Nobel Lecture). Angew. Chem. Int. Ed. Engl., 2004, 43(33), 4278-4290.
[http://dx.doi.org/10.1002/anie.200460804] [PMID: 15368374]
[2]
Almasalmeh, A.; Krenc, D.; Wu, B.; Beitz, E. Structural determinants of the hydrogen peroxide permeability of aquaporins. FEBS J., 2014, 281(3), 647-656.
[http://dx.doi.org/10.1111/febs.12653] [PMID: 24286224]
[3]
Gena, P.; Pellegrini-Calace, M.; Biasco, A.; Svelto, M.; Calamita, G. Aquaporin membrane channels: biophysics, classification, functions and possible biotechnological applications. Food Biophys., 2011, 6, 241-249.
[http://dx.doi.org/10.1007/s11483-010-9193-9]
[4]
Calamita, G.; Portincasa, P. The power of science diplomacy, a lesson from the Nobel laureate Peter Agre. Eur. J. Clin. Invest., 2016, 46(5), 491-493.
[http://dx.doi.org/10.1111/eci.12621] [PMID: 26999374]
[5]
Verkman, A.S. More than just water channels: unexpected cellular roles of aquaporins. J. Cell Sci., 2005, 118(Pt 15), 3225-3232.
[http://dx.doi.org/10.1242/jcs.02519] [PMID: 16079275]
[6]
Galán-Cobo, A.; Ramírez-Lorca, R.; Echevarría, M. Role of aquaporins in cell proliferation: what else beyond water permeability? Channels (Austin), 2016, 10(3), 185-201.
[http://dx.doi.org/10.1080/19336950.2016.1139250] [PMID: 26752515]
[7]
Fiorentini, D.; Zambonin, L.; Dalla Sega, F.V.; Hrelia, S. Polyphenols as modulators of aquaporin family in health and disease. Oxid. Med. Cell. Longev., 2015.2015196914
[http://dx.doi.org/10.1155/2015/196914] [PMID: 26346093]
[8]
Boyanapalli, S.S.S.; Kong, A.T. “Curcumin, the king of spices”: epigenetic regulatory mechanisms in the prevention of cancer, neurological, and inflammatory diseases. Curr. Pharmacol. Rep., 2015, 1(2), 129-139.
[http://dx.doi.org/10.1007/s40495-015-0018-x] [PMID: 26457241]
[9]
Zhang, X.; Chen, Q.; Wang, Y.; Peng, W.; Cai, H. Effects of curcumin on ion channels and transporters. Front. Physiol., 2014, 5, 94.
[http://dx.doi.org/10.3389/fphys.2014.00094] [PMID: 24653706]
[10]
Cole, G.M.; Teter, B.; Frautschy, S.A. Neuroprotective effects of curcumin. Adv. Exp. Med. Biol., 2007, 595, 197-212.
[http://dx.doi.org/10.1007/978-0-387-46401-5_8] [PMID: 17569212]
[11]
Laird, M.D.; Sukumari-Ramesh, S.; Swift, A.E.B.; Meiler, S.E.; Vender, J.R.; Dhandapani, K.M. Curcumin attenuates cerebral edema following traumatic brain injury in mice: a possible role for aquaporin-4? J. Neurochem., 2010, 113(3), 637-648.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06630.x] [PMID: 20132469]
[12]
Yu, L.S.; Fan, Y.Y.; Ye, G.; Li, J.; Feng, X.P.; Lin, K.; Dong, M.; Wang, Z. Curcumin alleviates brain edema by lowering AQP4 expression levels in a rat model of hypoxia-hypercapnia-induced brain damage. Exp. Ther. Med., 2016, 11(3), 709-716.
[http://dx.doi.org/10.3892/etm.2016.3022] [PMID: 26997983]
[13]
Zu, J.; Wang, Y.; Xu, G.; Zhuang, J.; Gong, H.; Yan, J. Curcumin improves the recovery of motor function and reduces spinal cord edema in a rat acute spinal cord injury model by inhibiting the JAK/STAT signaling pathway. Acta Histochem., 2014, 116(8), 1331-1336.
[http://dx.doi.org/10.1016/j.acthis.2014.08.004] [PMID: 25201116]
[14]
Nabiuni, M.; Nazari, Z.; Safaeinejad, Z.; Delfan, B.; Miyan, J.A. Curcumin downregulates aquaporin-1 expression in cultured rat choroid plexus cells. J. Med. Food, 2013, 16(6), 504-510.
[http://dx.doi.org/10.1089/jmf.2012.0208] [PMID: 23735000]
[15]
Oshio, K.; Watanabe, H.; Song, Y.; Verkman, A.S.; Manley, G.T. Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J., 2005, 19(1), 76-78.
[http://dx.doi.org/10.1096/fj.04-1711fje] [PMID: 15533949]
[16]
Zador, Z.; Bloch, O.; Yao, X.; Manley, G.T. Aquaporins: role in cerebral edema and brain water balance. Prog. Brain Res., 2007, 161, 185-194.
[http://dx.doi.org/10.1016/S0079-6123(06)61012-1]] [PMID: 17618977]
[17]
Foxley, S.; Zamora, M.; Hack, B.; Alexander, R.R.; Roman, B.; Quigg, R.J.; Alexander, J.J. Curcumin aggravates CNS pathology in experimental systemic lupus erythematosus. Brain Res., 2013, 1504, 85-96.
[http://dx.doi.org/10.1016/j.brainres.2013.01.040] [PMID: 23410788]
[18]
Gao, M.; Zhu, S-Y.; Tan, C.B.; Xu, B.; Zhang, W-C.; Du, G-H. Pinocembrin protects the neurovascular unit by reducing inflammation and extracellular proteolysis in MCAO rats. J. Asian Nat. Prod. Res, 2010, 12(5), 407-418.
[http://dx.doi.org/10.1080/10286020.2010.485129] [PMID: 20496198]
[19]
Angeloni, C.; Leoncini, E.; Malaguti, M.; Angelini, S.; Hrelia, P.; Hrelia, S. Role of quercetin in modulating rat cardiomyocyte gene expression profile. Am. J. Physiol. Heart Circ. Physiol., 2008, 294(3), H1233-H1243.
[http://dx.doi.org/10.1152/ajpheart.01091.2007] [PMID: 18178720]
[20]
Kumar, B.; Gupta, S.K.; Nag, T.C.; Srivastava, S.; Saxena, R.; Jha, K.A.; Srinivasan, B.P. Retinal neuroprotective effects of quercetin in streptozotocin-induced diabetic rats. Exp. Eye Res., 2014, 125, 193-202.
[http://dx.doi.org/10.1016/j.exer.2014.06.009] [PMID: 24952278]
[21]
D’Andrea, G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia, 2015, 106, 256-271.
[http://dx.doi.org/10.1016/j.fitote.2015.09.018] [PMID: 26393898]
[22]
Takahashi, A.; Inoue, H.; Mishima, K.; Ide, F.; Nakayama, R.; Hasaka, A.; Ryo, K.; Ito, Y.; Sakurai, T.; Hasegawa, Y.; Saito, I. Evaluation of the effects of quercetin on damaged salivary secretion. PLoS One, 2015, 10(1)e0116008
[http://dx.doi.org/10.1371/journal.pone.0116008] [PMID: 25629520]
[23]
Yu, C.H.; Yu, W.Y.; Fang, J.; Zhang, H.H.; Ma, Y.; Yu, B.; Wu, F.; Wu, X.N. Mosla scabra flavonoids ameliorate the influenza A virus-induced lung injury and water transport abnormality via the inhibition of PRR and AQP signaling pathways in mice. J. Ethnopharmacol., 2016, 179, 146-155.
[http://dx.doi.org/10.1016/j.jep.2015.12.034] [PMID: 26719287]
[24]
Sutherland, B.A.; Rahman, R.M.A.; Appleton, I. Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. J. Nutr. Biochem., 2006, 17(5), 291-306.
[http://dx.doi.org/10.1016/j.jnutbio.2005.10.005] [PMID: 16443357]
[25]
Ge, R.; Zhu, Y.; Diao, Y.; Tao, L.; Yuan, W.; Xiong, X-C. Anti-edema effect of epigallocatechin gallate on spinal cord injury in rats. Brain Res., 2013, 1527, 40-46.
[http://dx.doi.org/10.1016/j.brainres.2013.06.009] [PMID: 23831998]
[26]
Yan, C.; Yang, J.; Shen, L.; Chen, X. Inhibitory effect of Epigallocatechin gallate on ovarian cancer cell proliferation associated with aquaporin 5 expression. Arch. Gynecol. Obstet., 2012, 285(2), 459-467.
[http://dx.doi.org/10.1007/s00404-011-1942-6] [PMID: 21698451]
[27]
Parhiz, H.; Roohbakhsh, A.; Soltani, F.; Rezaee, R.; Iranshahi, M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother. Res., 2015, 29(3), 323-331.
[http://dx.doi.org/10.1002/ptr.5256] [PMID: 25394264]
[28]
Kumar, B.; Gupta, S.K.; Srinivasan, B.P.; Nag, T.C.; Srivastava, S.; Saxena, R.; Jha, K.A. Hesperetin rescues retinal oxidative stress, neuroinflammation and apoptosis in diabetic rats. Microvasc. Res., 2013, 87, 65-74.
[http://dx.doi.org/10.1016/j.mvr.2013.01.002] [PMID: 23376836]
[29]
Erdogan, C.S.; Vang, O. Challenges in analyzing the biological effects of resveratrol. Nutrients, 2016, 8(6)E353
[http://dx.doi.org/10.3390/nu8060353] [PMID: 27294953]
[30]
Wu, Z.; Uchi, H.; Morino-Koga, S.; Shi, W.; Furue, M. Resveratrol inhibition of human keratinocyte proliferation via SIRT1/ARNT/ERK dependent downregulation of aquaporin 3. J. Dermatol. Sci., 2014, 75(1), 16-23.
[http://dx.doi.org/10.1016/j.jdermsci.2014.03.004] [PMID: 24726500]
[31]
Cao, C.; Wan, S.; Jiang, Q.; Amaral, A.; Lu, S.; Hu, G.; Bi, Z.; Kouttab, N.; Chu, W.; Wan, Y. All-trans retinoic acid attenuates ultraviolet radiation-induced down-regulation of aquaporin-3 and water permeability in human keratinocytes. J. Cell. Physiol., 2008, 215(2), 506-516.
[http://dx.doi.org/10.1002/jcp.21336] [PMID: 18064629]
[32]
Li, W.; Tan, C.; Liu, Y.; Liu, X.; Wang, X.; Gui, Y.; Qin, L.; Deng, F.; Yu, Z.; Hu, C.; Chen, L. Resveratrol ameliorates oxidative stress and inhibits aquaporin 4 expression following rat cerebral ischemia-reperfusion injury. Mol. Med. Rep., 2015, 12(5), 7756-7762.
[http://dx.doi.org/10.3892/mmr.2015.4366] [PMID: 26458999]
[33]
Rana, S.; Bhushan, S. Apple phenolics as nutraceuticals: assessment, analysis and application. J. Food Sci. Technol., 2016, 53(4), 1727-1738.
[http://dx.doi.org/10.1007/s13197-015-2093-8] [PMID: 27413201]
[34]
Nakazato, K.; Song, H.; Waga, T. Effects of dietary apple polyphenol on adipose tissues weights in Wistar rats. Exp. Anim., 2006, 55(4), 383-389.
[http://dx.doi.org/10.1538/expanim.55.383] [PMID: 16880686]
[35]
Sugiyama, H.; Akazome, Y.; Shoji, T.; Yamaguchi, A.; Yasue, M.; Kanda, T.; Ohtake, Y. Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption. J. Agric. Food Chem., 2007, 55(11), 4604-4609.
[http://dx.doi.org/10.1021/jf070569k] [PMID: 17458979]
[36]
Boqué, N.; de la Iglesia, R.; de la Garza, A.L.; Milagro, F.I.; Olivares, M.; Bañuelos, O.; Soria, A.C.; Rodríguez-Sánchez, S.; Martínez, J.A.; Campión, J. Prevention of diet-induced obesity by apple polyphenols in Wistar rats through regulation of adipocyte gene expression and DNA methylation patterns. Mol. Nutr. Food Res., 2013, 57(8), 1473-1478.
[http://dx.doi.org/10.1002/mnfr.201200686] [PMID: 23529981]
[37]
Aliomrani, M.; Sepand, M.R.; Mirzaei, H.R.; Kazemi, A.R.; Nekonam, S.; Sabzevari, O. Effects of phloretin on oxidative and inflammatory reaction in rat model of cecal ligation and puncture induced sepsis. Daru, 2016, 24(1), 15.
[http://dx.doi.org/10.1186/s40199-016-0154-9] [PMID: 27150961]
[38]
Calamita, G.; Gena, P.; Ferri, D.; Rosito, A.; Rojek, A.; Nielsen, S.; Marinelli, R.A.; Frühbeck, G.; Svelto, M. Biophysical assessment of aquaporin-9 as principal facilitative pathway in mouse liver import of glucogenetic glycerol. Biol. Cell, 2012, 104(6), 342-351.
[http://dx.doi.org/10.1111/boc.201100061] [PMID: 22316404]
[39]
Crespy, V.; Aprikian, O.; Morand, C.; Besson, C.; Manach, C.; Demigné, C.; Rémésy, C. Bioavailability of phloretin and phloridzin in rats. J. Nutr., 2001, 131(12), 3227-3230.
[http://dx.doi.org/10.1093/jn/131.12.3227] [PMID: 11739871]
[40]
Idris, I.; Donnelly, R. Sodium-glucose co-transporter-2 inhibitors: an emerging new class of oral antidiabetic drug. Diabetes Obes. Metab., 2009, 11(2), 79-88.
[http://dx.doi.org/10.1111/j.1463-1326.2008.00982.x] [PMID: 19125776]
[41]
Fenton, R.A.; Chou, C.L.; Stewart, G.S.; Smith, C.P.; Knepper, M.A. Urinary concentrating defect in mice with selective deletion of phloretin-sensitive urea transporters in the renal collecting duct. Proc. Natl. Acad. Sci. USA, 2004, 101(19), 7469-7474.
[http://dx.doi.org/10.1073/pnas.0401704101] [PMID: 15123796]
[42]
Shayakul, C.; Tsukaguchi, H.; Berger, U.V.; Hediger, M.A. Molecular characterization of a novel urea transporter from kidney inner medullary collecting ducts. Am. J. Physiol. Renal Physiol., 2001, 280(3), F487-F494.
[http://dx.doi.org/10.1152/ajprenal.2001.280.3.F487] [PMID: 11181411]
[43]
Jelen, S.; Gena, P.; Lebeck, J.; Rojek, A.; Praetorius, J.; Frøkiaer, J.; Fenton, R.A.; Nielsen, S.; Calamita, G.; Rützler, M. Aquaporin-9 and urea transporter-A gene deletions affect urea transmembrane passage in murine hepatocytes. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 303(11), G1279-G1287.
[http://dx.doi.org/10.1152/ajpgi.00153.2012] [PMID: 23042941]
[44]
Calamita, G.; Ferri, D.; Gena, P.; Carreras, F.I.; Liquori, G.E.; Portincasa, P.; Marinelli, R.A.; Svelto, M. Altered expression and distribution of aquaporin-9 in the liver of rat with obstructive extrahepatic cholestasis. Am. J. Physiol. Gastrointest. Liver Physiol., 2008, 295(4), G682-G690.
[http://dx.doi.org/10.1152/ajpgi.90226.2008] [PMID: 18669624]
[45]
Rodríguez, A.; Gena, P.; Méndez-Giménez, L.; Rosito, A.; Valentí, V.; Rotellar, F.; Sola, I.; Moncada, R.; Silva, C.; Svelto, M.; Salvador, J.; Calamita, G.; Frühbeck, G. Reduced hepatic aquaporin-9 and glycerol permeability are related to insulin resistance in non-alcoholic fatty liver disease. Int. J. Obes., 2014, 38(9), 1213-1220.
[http://dx.doi.org/10.1038/ijo.2013.234] [PMID: 24418844]
[46]
Tsukaguchi, H.; Weremowicz, S.; Morton, C.C.; Hediger, M.A. Functional and molecular characterization of the human neutral solute channel aquaporin-9. Am. J. Physiol., 1999, 277(5), F685-F696.
[PMID: 10564231]
[47]
Alvarez-Suarez, J.M.; Giampieri, F.; Battino, M. Honey as a source of dietary antioxidants: structures, bioavailability and evidence of protective effects against human chronic diseases. Curr. Med. Chem., 2013, 20(5), 621-638.
[http://dx.doi.org/10.2174/092986713804999358] [PMID: 23298140]
[48]
Dunkić, V.; Kosalec, I.; Kosir, I.J.; Potocnik, T.; Cerenak, A.; Koncic, M.Z.; Vitali, D.; Muller, I.D.; Kopricanec, M.; Bezic, N.; Srecec, S.; Kremer, D. Antioxidant and antimicrobial properties of Veronica spicata L. (Plantaginaceae). Curr. Drug Targets, 2015, 16(14), 1660-1670.
[http://dx.doi.org/10.2174/1389450116666150531161820] [PMID: 26028041]
[49]
Nabavi, S.F.; Braidy, N.; Habtemariam, S.; Orhan, I.E.; Daglia, M.; Manayi, A.; Gortzi, O.; Nabavi, S.M. Neuroprotective effects of chrysin: From chemistry to medicine. Neurochem. Int., 2015, 90, 224-231.
[http://dx.doi.org/10.1016/j.neuint.2015.09.006] [PMID: 26386393]
[50]
Wu, N-L.; Fang, J-Y.; Chen, M.; Wu, C-J.; Huang, C-C.; Hung, C-F. Chrysin protects epidermal keratinocytes from UVA- and UVB-induced damage. J. Agric. Food Chem., 2011, 59(15), 8391-8400.
[http://dx.doi.org/10.1021/jf200931t] [PMID: 21699266]
[51]
He, W.; Li, Y.; Xue, C.; Hu, Z.; Chen, X.; Sheng, F. Effect of Chinese medicine alpinetin on the structure of human serum albumin. Bioorg. Med. Chem., 2005, 13(5), 1837-1845.
[http://dx.doi.org/10.1016/j.bmc.2004.11.038] [PMID: 15698801]
[52]
Tang, B.; Du, J.; Wang, J.; Tan, G.; Gao, Z.; Wang, Z.; Wang, L. Alpinetin suppresses proliferation of human hepatoma cells by the activation of MKK7 and elevates sensitization to cis-diammined dichloridoplatium. Oncol. Rep., 2012, 27(4), 1090-1096.
[http://dx.doi.org/10.3892/or.2011.1580] [PMID: 22159816]
[53]
Liang, X.; Zhang, B.; Chen, Q.; Zhang, J.; Lei, B.; Li, B.; Wei, Y.; Zhai, R.; Liang, Z.; He, S.; Tang, B. The mechanism underlying alpinetin-mediated alleviation of pancreatitis-associated lung injury through upregulating aquaporin-1. Drug Des. Devel. Ther., 2016, 10, 841-850.
[PMID: 26966354]
[54]
King, A.; Young, G. Characteristics and occurrence of phenolic phytochemicals. J. Am. Diet. Assoc., 1999, 99(2), 213-218.
[http://dx.doi.org/10.1016/S0002-8223(99)00051-6] [PMID: 9972191]
[55]
Rice, S.; Whitehead, S.A. Phytoestrogens oestrogen synthesis and breast cancer. J. Steroid Biochem. Mol. Biol., 2008, 108(3-5), 186-195.
[http://dx.doi.org/10.1016/j.jsbmb.2007.09.003] [PMID: 17936616]
[56]
Cos, P.; De Bruyne, T.; Apers, S.; Vanden Berghe, D.; Pieters, L.; Vlietinck, A.J. Phytoestrogens: recent developments. Planta Med., 2003, 69(7), 589-599.
[http://dx.doi.org/10.1055/s-2003-41122] [PMID: 12898412]
[57]
Möller, F.J.; Diel, P.; Zierau, O.; Hertrampf, T.; Maass, J.; Vollmer, G. Long-term dietary isoflavone exposure enhances estrogen sensitivity of rat uterine responsiveness mediated through estrogen receptor alpha. Toxicol. Lett., 2010, 196(3), 142-153.
[http://dx.doi.org/10.1016/j.toxlet.2010.03.1117] [PMID: 20381596]
[58]
Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic syndrome: definitions and controversies. BMC Med., 2011, 9, 48.
[http://dx.doi.org/10.1186/1741-7015-9-48] [PMID: 21542944]
[59]
Dekker, M.J.; Su, Q.; Baker, C.; Rutledge, A.C.; Adeli, K. Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab., 2010, 299(5), E685-E694.
[http://dx.doi.org/10.1152/ajpendo.00283.2010] [PMID: 20823452]
[60]
Isomaa, B.; Henricsson, M.; Almgren, P.; Tuomi, T.; Taskinen, M.R.; Groop, L. The metabolic syndrome influences the risk of chronic complications in patients with type II diabetes. Diabetologia, 2001, 44(9), 1148-1154.
[http://dx.doi.org/10.1007/s001250100615] [PMID: 11596670]
[61]
Ewida, S.F.; Al-Sharaky, D.R. Implication of renal aquaporin-3 in fructose-induced metabolic syndrome and melatonin protection. J. Clin. Diagn. Res., 2016, 10(4), CF06-CF11.
[http://dx.doi.org/10.7860/JCDR/2016/18362.7656] [PMID: 27190797]
[62]
Rodríguez, A.; Catalán, V.; Gómez-Ambrosi, J.; Frühbeck, G. Information regarding the role of aquaglyceroporins in humans is scarce. Cell Cycle, 2011, 10, 1548-1556.
[PMID: 21502813]
[63]
Chalasani, N.; Younossi, Z.; Lavine, J.E.; Diehl, A.M.
Brunt, E.M.; Cusi, K.; Charlton, M.; Sanyal, A.J. The diag-nosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological As-sociation, American Association for the Study of Liver Dis-eases, and American College of Gastroenterology. Gastroenterology, 2012, 142(7), 1592-1609.
[http://dx.doi.org/10.1053/j.gastro.2012.04.001] [PMID: 22656328]
[64]
Tiniakos, D.G.; Vos, M.B.; Brunt, E.M. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu. Rev. Pathol., 2010, 5, 145-171.
[http://dx.doi.org/10.1146/annurev-pathol-121808-102132] [PMID: 20078219]
[65]
Gena, P.; Mastrodonato, M.; Portincasa, P.; Fanelli, E.; Mentino, D.; Rodríguez, A.; Marinelli, R.A.; Brenner, C.; Frühbeck, G.; Svelto, M.; Calamita, G. Liver glycerol permeability and aquaporin-9 are dysregulated in a murine model of Non-Alcoholic Fatty Liver Disease. PLoS One, 2013, 8(10)e78139
[http://dx.doi.org/10.1371/journal.pone.0078139] [PMID: 24205128]
[66]
Rodríguez, A.; Moreno, N.R.; Balaguer, I.; Méndez-Giménez, L.; Becerril, S.; Catalán, V.; Gómez-Ambrosi, J.; Portincasa, P.; Calamita, G.; Soveral, G.; Malagón, M.M.; Frühbeck, G. Leptin administration restores the altered adipose and hepatic expression of aquaglyceroporins improving the non-alcoholic fatty liver of ob/ob mice. Sci. Rep., 2015, 5, 12067.
[http://dx.doi.org/10.1038/srep12067] [PMID: 26159457]
[67]
Rodríguez, A.; Gena, P.; Méndez-Giménez, L.; Rosito, A.; Valentí, V.; Rotellar, F.; Sola, I.; Moncada, R.; Silva, C.; Svelto, M.; Salvador, J.; Calamita, G.; Frühbeck, G. Reduced hepatic aquaporin-9 and glycerol permeability are related to insulin resistance in non-alcoholic fatty liver disease. Int. J. Obes., 2014, 38(9), 1213-1220.
[http://dx.doi.org/10.1038/ijo.2013.234] [PMID: 24418844]
[68]
Calamita, G.; Delporte, C.; Marinelli, R.A. Hepatobiliary, salivary glands and pancreas aquaporins in health and disease. In: Aquaporins in health and disease: new molecular targets for drug discovery;; Soveral, G.; Casini, A.; Nielsen, S., Eds.; CRC Press Taylor & Francis Group, 2015; pp. 183-205.
[69]
Bernardino, R.L.; Marinelli, R.A.; Maggio, A.; Gena, P.; Cataldo, I.; Alves, M.G.; Svelto, M.; Oliveira, P.F.; Calamita, G. Hepatocyte and sertoli cell aquaporins, recent advances and research trends. Int. J. Mol. Sci., 2016, 17(7), 1096.
[http://dx.doi.org/10.3390/ijms17071096] [PMID: 27409609]
[70]
Portois, L.; Zhang, Y.; Ladrière, L.; Perret, J.; Louchami, K.; Gaspard, N.; Hupkens, E.; Bolaky, N.; Delforge, V.; Beauwens, R.; Malaisse, W.J.; Sener, A.; Carpentier, Y.A.; Delporte, C. Perturbation of glycerol metabolism in hepatocytes from n3-PUFA-depleted rats. Int. J. Mol. Med., 2012, 29(6), 1121-1126.
[PMID: 22426780]
[71]
Cai, C.; Wang, C.; Ji, W.; Liu, B.; Kang, Y.; Hu, Z.; Jiang, Z. Knockdown of hepatic aquaglyceroporin-9 alleviates high fat diet-induced non-alcoholic fatty liver disease in rats. Int. Immunopharmacol., 2013, 15(3), 550-556.
[http://dx.doi.org/10.1016/j.intimp.2013.01.020] [PMID: 23415870]
[72]
Gambert, S.; Héliès-Toussaint, C.; Grynberg, A. Extracellular glycerol regulates the cardiac energy balance in a working rat heart model. Am. J. Physiol. Heart Circ. Physiol., 2007, 292(3), H1600-H1606.
[http://dx.doi.org/10.1152/ajpheart.00563.2006] [PMID: 17040970]
[73]
Palabiyik, O.; Karaca, A.; Taştekin, E.; Yamasan, B.E.; Tokuç, B.; Sipahi, T.; Vardar, S.A. The effect of a high-protein diet and exercise on cardiac AQP7 and GLUT4 gene expression. Biochem. Genet., 2016, 54(5), 731-745.
[http://dx.doi.org/10.1007/s10528-016-9753-x] [PMID: 27294385]
[74]
Hibuse, T.; Maeda, N.; Nakatsuji, H.; Tochino, Y.; Fujita, K.; Kihara, S.; Funahashi, T.; Shimomura, I. The heart requires glycerol as an energy substrate through aquaporin 7, a glycerol facilitator. Cardiovasc. Res., 2009, 83(1), 34-41.
[http://dx.doi.org/10.1093/cvr/cvp095] [PMID: 19297367]
[75]
Gladka, M.; El Azzouzi, H.; De Windt, L.J.; da Costa Martins, P.A. Aquaporin 7: the glycerol aquaeductus in the heart. Cardiovasc. Res., 2009, 83(1), 3-4.
[http://dx.doi.org/10.1093/cvr/cvp147] [PMID: 19429920]
[76]
Thornton, S.N. Increased hydration can be associated with weight loss. Front. Nutr., 2016, 10, 3-18.
[http://dx.doi.org/10.3389/fnut.2016.00018]
[77]
Dennis, E.A.; Dengo, A.L.; Comber, D.L.; Flack, K.D.; Savla, J.; Davy, K.P.; Davy, B.M. Water consumption increases weight loss during a hypocaloric diet intervention in middle-aged and older adults. Obesity (Silver Spring), 2010, 18(2), 300-307.
[http://dx.doi.org/10.1038/oby.2009.235] [PMID: 19661958]
[78]
Parretti, H.M.; Aveyard, P.; Blannin, A.; Clifford, S.J.; Coleman, S.J.; Roalfe, A.; Daley, A.J. Efficacy of water preloading before main meals as a strategy for weight loss in primary care patients with obesity: RCT. Obesity (Silver Spring), 2015, 23(9), 1785-1791.
[http://dx.doi.org/10.1002/oby.21167] [PMID: 26237305]
[79]
Kennedy, G.C. The role of depot fat in the hypothalamic control of food intake in the rat. Proc. R. Soc. Lond. B Biol. Sci., 1953, 140(901), 578-596.
[http://dx.doi.org/10.1098/rspb.1953.0009] [PMID: 13027283]
[80]
Ye, Q.; Wu, Y.; Gao, Y.; Li, Z.; Li, W.; Zhang, C. The ‘selfish brain’ is regulated by aquaporins and autophagy under nutrient deprivation. Mol. Med. Rep., 2016, 13(5), 3842-3848.
[http://dx.doi.org/10.3892/mmr.2016.4988] [PMID: 26986971]
[81]
Belkacemi, L.; Desai, M.; Beall, M.H.; Liu, Q.; Lin, J.T.; Nelson, D.M.; Ross, M.G. Early compensatory adaptations in maternal undernourished pregnancies in rats: role of the aquaporins. J. Matern. Fetal Neonatal Med., 2011, 24(5), 752-759.
[http://dx.doi.org/10.3109/14767058.2010.521870] [PMID: 20958229]
[82]
Portincasa, P.; Calamita, G. Phytocompounds modulating aquaporins: clinical benefits are anticipated. food chem., 2019, 274, 642-650.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.029] [pmid:30372989]
[83]
Tesse, A.; Grossini, E.; Tamma, G.; Brenner, C.; Portincasa, P.; Marinelli, R.A.; Calamita, G. Aquaporins as targets of dietary bioactive phytocompounds. Front. Mol. Biosci., 2018, 5, 30.
[http://dx.doi.org/10.3389/fmolb.2018.00030] [PMID: 29721498]
[84]
Tamma, G.; Valenti, G.; Grossini, E.; Donnini, S.; Marino, A.; Marinelli, R.A.; Calamita, G. Aquaporin membrane channels in oxidative stress, cell signaling and aging: recent advances and research trends. Oxid. Med. Cell. Longev., 2018.20181501847
[http://dx.doi.org/10.1155/2018/1501847] [PMID: 29770164]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy