Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

Insight into the Role of Photoreception and Light Intervention for Sleep and Neuropsychiatric Behaviour in the Elderly

Author(s): Katharina Wulff * and Russell G. Foster

Volume 14, Issue 10, 2017

Page: [1022 - 1029] Pages: 8

DOI: 10.2174/1567205014666170523095231

Price: $65

Abstract

Light exerts influences on many physiological and behavioural functions in humans. These functions can be described as image-forming (IF) and non-image forming (NIF) visual processes, both originating in the retina of the eye. Image-forming refers to vision; the process of detecting and distinguishing shapes and colour of objects. Non-image forming refers to detecting level of light intensity or brightness of ambient space, which affects basal physiology such as cycles of rest and activity or the endocrine system. Rod and cone photoreceptors in the outer retinal layer are most important for imageforming vision, while non-image forming functions depend upon additional input from the photopigment melanopsin, which is expressed in retinal ganglion cells (RGC) that makes these cells photosensitive (pRGC). Projections of these pRGCs convey light-induced electrical impulses to a number of brain regions. Visual acuity and colour contrast naturally diminishes with age but dementia often has major effects on the visual processing systems, which impact on the quality of life. The ability of humans to manipulate their light exposure has the immediate potential to either create problems with human physiology (as in shift workers) or to compensate physiological disadvantages (of IF and NIF visual impairment). This mini-review describes the impact of aging on the function of the eye with respect to nonimage forming effects of light, summarises light intervention studies for sleep and neuropsychiatric symptoms and considers implications from photoreceptor-weighted light intensities for biologically effective light intervention and lighting solutions for patients with dementia.

Keywords: Sleep, circadian, melanopsin, retina, visual impairment, photoreception, Alzheimer, cognitive impairment.

[1]
Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93(6): 929-37. (1998).
[2]
Tosini G, Pozdeyev N, Sakamoto K, Iuvone PM. The circadian clock system in the mammalian retina. BioEssays: News and ReViews Mol. Cell Dev Biol 30(7): 624-33. (2008).
[3]
Freedman MS, Lucas RJ, Soni B, von Schantz M, Munoz M, David-Gray ZK, et al. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284: 502-4. (1999).
[4]
Gooley JJ, Lu J, Chou TC, Scammell TE, Saper CB. Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci 12: 1165. (2001).
[5]
Gooley JJ, Lu J, Fischer D, Saper CB. A broad role for melanopsin in nonvisual photoreception. J Neurosci 23(18): 7093-106. (2003).
[6]
Hannibal J, Hindersson P, Knudsen SM, Georg B, Fahrenkrug J. The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract. J Neurosci 22(RC191): 1-7. (2002).
[7]
Hannibal J, Fahrenkrug J. Melanopsin: a novel photopigment involved in the photoentrainment of the brain’s biological clock? Ann Med 34(5): 401-7. (2002).
[8]
Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ, Hogenesch JB, et al. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298(5601): 2213-6. (2002).
[9]
Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, Heller HC, et al. Role of melanopsin in circadian responses to light. Science 298(5601): 2211-3. (2002).
[10]
Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295: 1070-3. (2002).
[11]
Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295: 1065-70. (2002).
[12]
Bowmaker JK, Dartnall HJ. Visual pigments of rods and cones in a human retina. J Physiol 298: 501-11. (1980).
[13]
Bondarenko LN. Spectral polarimetric measurements of the twighlight sky polarisation at the Zenith. Sov Astron 8: 299-302. (1964).
[14]
Hader DP, Tevini M. General Photobiology. Oxford: Pergamon Press; 1987. 323 p.
[15]
Sekaran S, Foster RG, Lucas RJ, Hankins MW. Calcium imaging reveals a network of intrinsically light-sensitive inner-retinal neurons. Curr Biol 13(15): 1290-8. (2003).
[16]
Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW, et al. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497(3): 326-49. (2006).
[17]
Schmidt TM, Do MT, Dacey D, Lucas R, Hattar S, Matynia A. Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function. J Neurosci 31(45): 16094-101. (2011).
[18]
Schmidt TM, Chen SK, Hattar S. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci 34(11): 572-80. (2011).
[19]
Hughes S, Rodgers J, Hickey D, Foster RG, Peirson SN, Hankins MW. Characterisation of light responses in the retina of mice lacking principle components of rod, cone and melanopsin phototransduction signalling pathways. Sci Rep 6: 28086. (2016).
[20]
Nayak SK, Jegla T, Panda S. Role of a novel photopigment, melanopsin, in behavioral adaptation to light. Cell Mol Life Sci: CMLS 64(2): 144-54. (2007).
[21]
Pilorz V, Tam SK, Hughes S, Pothecary CA, Jagannath A, Hankins MW, et al. Melanopsin regulates both sleep-promoting and arousal-promoting responses to light. PLoS Biol 14(6)e1002482 (2016).
[22]
Zaidi FH, Hull JT, Peirson SN, Wulff K, Aeschbach D, Gooley JJ, et al. Short-wavelength light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina. Curr Biol 17(24): 2122-8. (2007).
[23]
Storchi R, Milosavljevic N, Eleftheriou CG, Martial FP, Orlowska-Feuer P, Bedford RA, et al. Melanopsin-driven increases in maintained activity enhance thalamic visual response reliability across a simulated dawn. Proc Natl Acad Sci USA 112(42): E5734-43. (2015).
[24]
Cuthbertson FM, Peirson SN, Wulff K, Foster RG, Downes SM. Blue light-filtering intraocular lenses: review of potential benefits and side effects. J Cataract Refract Surg 35(7): 1281-97. (2009).
[25]
van de Kraats J, van Norren D. Optical density of the aging human ocular media in the visible and the UV. J Opt Soc Am A Opt Image Sci Vis 24(7): 1842-57. (2007).
[26]
Winn B, Whitaker D, Elliott DB, Phillips NJ. Factors affecting light-adapted pupil size in normal human subjects. Invest Ophthalmol Vis Sci 35(3): 1132-7. (1994).
[27]
Veitch JA. Psychological processes influencing lighting quality. J Illumin Eng Soc 30(1) (2001).
[28]
Bron GF, Koretz J, Maraini J, Harding JJ. The aging lens. Ophthalmologica 214: 86-104. (2000).
[29]
Najjar RP, Chiquet C, Teikari P, Cornut PL, Claustrat B, Denis P, et al. Aging of non-visual spectral sensitivity to light in humans: compensatory mechanisms? PLoS One 9(1)e85837 (2014).
[30]
Alexander I, Cuthbertson FM, Ratnarajan G, Safa R, Mellington FE, Foster RG, et al. Impact of cataract surgery on sleep in patients receiving either ultraviolet-blocking or blue-filtering intraocular lens implants. Invest Ophthalmol Vis Sci 55(8): 4999-5004. (2014).
[31]
Lerner S, Belkin J, Lass J, Riedel T, Steinemann T, Sami S, et al. Viusal and cognitive improvement following cataract surgery in subjects with dementia. Alzheimer's Association International Conference; Copenhagen: The Journal of Alzheimer's Association 2014. p. P456-7.
[32]
Armstrong RA. Alzheimer’s disease and the eye. J Optom 2: 103-11. (2009).
[33]
Parisi V, Restuccia R, Fattapposta F, Mina C, Bucci MG, Pierelli F. Morphological and functional retinal impairment in Alzheimer’s disease patients. Clin Neurophysiol 112(10): 1860-7. (2001).
[34]
Hinton DR, Sadun AA, Blanks JC, Miller CA. Optic-nerve degeneration in Alzheimer’s disease. N Engl J Med 315(8): 485-7. (1986).
[35]
Sadun AA, Bassi CJ. Optic nerve damage in Alzheimer’s disease. Ophthalmology 97(1): 9-17. (1990).
[36]
Tsai CS, Ritch R, Schwartz B, Lee SS, Miller NR, Chi T, et al. Optic nerve head and nerve fiber layer in Alzheimer’s disease. Arch Ophthalmol 109(2): 199-204. (1991).
[37]
Goldstein LE, Muffat JA, Cherny RA, Moir RD, Ericsson MH, Huang X, et al. Cytosolic beta-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer’s disease. Lancet 361(9365): 1258-65. (2003).
[38]
Scheuermaier K, Laffan AM, Duffy JF. Light exposure patterns in healthy older and young adults. J Biol Rhythms 25(2): 113-22. (2010).
[39]
Wright KP Jr, McHill AW, Birks BR, Griffin BR, Rusterholz T, Chinoy ED. Entrainment of the human circadian clock to the natural light-dark cycle. Curr Biol 23(16): 1554-8. (2013).
[40]
Higuchi S, Lee SI, Kozaki T, Harada T, Tanaka I. Late circadian phase in adults and children is correlated with use of high color temperature light at home at night. Chronobiol Int 33(4): 448-52. (2016).
[41]
Obayashi K, Saeki K, Iwamoto J, Okamoto N, Tomioka K, Nezu S, et al. Positive effect of daylight exposure on nocturnal urinary melatonin excretion in the elderly: a cross-sectional analysis of the HEIJO-KYO study. J Clin Endocrinol Metab 97(11): 4166-73. (2012).
[42]
Chang AM, Santhi N, St Hilaire M, Gronfier C, Bradstreet DS, Duffy JF, et al. Human responses to bright light of different durations. J Physiol 590(Pt 13): 3103-12. (2012).
[43]
St Hilaire MA, Gooley JJ, Khalsa SB, Kronauer RE, Czeisler CA, Lockley SW. Human phase response curve to a 1 h pulse of bright white light. J Physiol 590(Pt 13): 3035-45. (2012).
[44]
Kim SJ, Benloucif S, Reid KJ, Weintraub S, Kennedy N, Wolfe LF, et al. Phase-shifting response to light in older adults. J Physiol 592(Pt 1): 189-202. (2014).
[45]
Duffy JF, Zeitzer JM, Czeisler CA. Decreased sensitivity to phase-delaying effects of moderate intensity light in older subjects. Neurobiol Aging 28(5): 799-807. (2007).
[46]
Herljevic M, Middleton B, Thapan K, Skene DJ. Light-induced melatonin suppression: age-related reduction in response to short wavelength light. Exp Gerontol 40(3): 237-42. (2005).
[47]
Wehr TA, Giesen HA, Schulz PM, Anderson JL, Joseph-Vanderpool JR, Kelly K, et al. Contrasts between symptoms of summer depression and winter depression. J Affect Disord 23(4): 173-83. (1991).
[48]
Lee TM, Chan CC. Dose-response relationship of phototherapy for seasonal affective disorder: a meta-analysis. Acta Psychiatr Scand 99(5): 315-23. (1999).
[49]
Tuunainen A, Kripke DF, Endo T. Light therapy for non-seasonal depression. Cochrane Database Syst Rev (2): CD004050 (2004).
[50]
Martiny K, Lunde M, Unden M, Dam H, Bech P. Adjunctive bright light in non-seasonal major depression: results from clinician-rated depression scales. Acta Psychiatr Scand 112(2): 117-25. (2005).
[51]
Sondergaard MP, Jarden JO, Martiny K, Andersen G, Bech P. Dose response to adjunctive light therapy in citalopram-treated patients with post-stroke depression. A randomised, double-blind pilot study. Psychother Psychosom 75(4): 244-8. (2006).
[52]
Golden RN, Gaynes BN, Ekstrom RD, Hamer RM, Jacobsen FM, Suppes T, et al. The efficacy of light therapy in the treatment of mood disorders: a review and meta-analysis of the evidence. Am J Psychiatry 162(4): 656-62. (2005).
[53]
Genhart MJ, Kelly KA, Coursey RD, Datiles M, Rosenthal NE. Effects of bright light on mood in normal elderly women. Psychiatry Res 47(1): 87-97. (1993).
[54]
Montgomery P, Dennis J. Bright light therapy for sleep problems in adults aged 60+. Cochrane Database Sys Rev (2): CD003403 (2002).
[55]
Forbes D, Blake CM, Thiessen EJ, Peacock S, Hawranik P. Light therapy for improving cognition, activities of daily living, sleep, challenging behaviour, and psychiatric disturbances in dementia. Cochrane Database Syst Rev 2CD003946 (2014).
[56]
Van Someren EJ, Kessler A, Mirmiran M, Swaab DF. Indirect bright light improves circadian rest-activity rhythm disturbances in demented patients. Biol Psychiatry 41(9): 955-63. (1997).
[57]
Van Someren EJ, Swaab DF, Colenda CC, Cohen W, McCall WV, Rosenquist PB. Bright light therapy: improved sensitivity to its effects on rest-activity rhythms in Alzheimer patients by application of nonparametric methods. Chronobiol Int 16(4): 505-18. (1999).
[58]
Riemersma-van der Lek RF, Swaab DF, Twisk J, Hol EM, Hoogendijk WJ, Van Someren EJ. Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial. JAMA 299(22): 2642-55. (2008).
[59]
Salami O, Lyketsos C, Rao V. Treatment of sleep disturbance in Alzheimer’s dementia. Int J Geriatr Psychiatry 26(8): 771-82. (2011).
[60]
van Maanen A, Meijer AM, van der Heijden KB, Oort FJ. The effects of light therapy on sleep problems: A systematic review and meta-analysis. Sleep Med Rev 29: 52-62. (2016).
[61]
Hopkins SM, Schlangen LJM, Williams P, Skene DJ, Middleton B. Blue-enriched lighting for older people living in care homes: effect on activity, actigraphic sleep, mood and alertness. Curr Alzheimer Res 14(10): 1080-9. (2017).
[62]
Münch MS, Bieler K, Goldbach R, Fuhrmann T, Zumstein N, Vonmoos P, et al. Bright light delights: effects of daily light exposure on emotions, rest-activity cycles, sleep and melatonin secretion in severely demented patients. Curr Alzheimer Res 14(10): 1022-34. (2017).
[63]
Barrick AL, Sloane PD, Williams CS, Mitchell CM, Connell BR, Wood W, et al. Impact of ambient bright light on agitation in dementia. Int J Geriatr Psychiatry 25(10): 1013-21. (2010).
[64]
Dowling GA, Graf CL, Hubbard EM, Luxenberg JS. Light treatment for neuropsychiatric behaviors in Alzheimer’s disease. West J Nurs Res 29(8): 961-75. (2007).
[65]
White MD, Ancoli-Israel S, Wilson RR. Senior living environments: evidence-based lighting design strategies. HERD 7(1): 60-78. (2013).
[66]
Royer M, Ballentine NH, Eslinger PJ, Houser K, Mistrick R, Behr R, et al. Light therapy for seniors in long term care. J Am Med Dir Assoc 13(2): 100-2. (2012).
[67]
Lucas RJ, Peirson SN, Berson DM, Brown TM, Cooper HM, Czeisler CA, et al. Measuring and using light in the melanopsin age. Trends Neurosci 37(1): 1-9. (2014).
[68]
Gimenez MS, Schlangen L, Lang D, Beersma LED, Novotny P, Plischke H, et al. D3.7 Report on metric to quantify biological light exposure doses. Accelerate SSL Innovation for Europe. Brussels: European Commission, Deliverable 3.7 FP7-ICT-2013-11-619240 (2016). http: //lightingforpeople.eu/2016/wp-content/ uploads/2016/10/SSL-erate-Report_on_metric_ to_quantify_ biolo-gical_light_exposure_doses.pdf

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy