Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

Nanotechnology Based Theranostic Approaches in Alzheimer's Disease Management: Current Status and Future Perspective

Author(s): Javed Ahmad, Sohail Akhter*, Md. Rizwanullah, Mohammad Ahmed Khan, Lucie Pigeon, Richard T. Addo, Nigel H. Greig, Patrick Midoux, Chantal Pichon and Mohammad Amjad Kamal

Volume 14, Issue 11, 2017

Page: [1164 - 1181] Pages: 18

DOI: 10.2174/1567205014666170508121031

Price: $65

Abstract

Background: Alzheimer's disease (AD), a cognitive dysfunction/dementia state amongst the elders is characterized by irreversible neurodegeneration due to varied pathophysiology. Up till now, anti-AD drugs having different pharmacology have been developed and used in clinic. Yet, these medications are not curative and only lowering the AD associated symptoms. Improvement in treatment outcome required drug targeting across the blood-brain barrier (BBB) to the central nervous system (CNS) in optimal therapeutic concentration. Nanotechnology based diagnostic tools, drug carriers and theranostics offer highly sensitive molecular detection, effective drug targeting and their combination. Over the past decade, significant works have been done in this area and we have seen very remarkable outocome in AD therapy. Various nanoparticles from organic and inorganic nanomaterial category have successfully been investigated against AD.

Conclusion: This paper discussed the role of nanoparticles in early detection of AD, effective drug targeting to brain and theranostic (diagnosis and therapy) approaches in AD's management.

Keywords: Alzheimer's disease, blood brain barrier, diagnosis, theranostic, nanoparticles, nanomedicines.

[1]
Prince M, Albanese E, Guerchet M, Prina M. World alzheimer report 2014: Dementia and risk reduction. www.alz.co.uk/research/WorldAlzheimerReport 2014.
[2]
Nabeshima T, Nitta A. Memory impairment and neuronal dysfunction induced by beta-amyloid protein in rats. Tohoku J Exp Med 174(3): 241-9. (1994).
[3]
Popovic N, Brundin P. Therapeutic potential of controlled drug delivery systems in neurodegenerative diseases. Int J Pharm 314(2): 120-6. (2006).
[4]
Potschka H. Targeting the brain-Surmounting or bypassing the blood-brain barrier. Handb Exp Pharmacol 411-31. (2010).
[5]
Ahmad MZ, Akhter S, Rahman Z, Ahmad J, Ahmad I, Ahmad FJ. Nanomedicine based drug targeting in Alzheimer’s disease: High impact of small carter. In: Atta-ur-Rahman, Choudhary MI. (Eds.). Front Drug Design Discov 6: 716-39 (2014).
[6]
Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 64(7): 686-700. (2012).
[7]
Brambilla D, Le Droumaguet B, Nicolas J, Hashemi SH, Wu LP, Moghimi SM, et al. Nanotechnologies for Alzheimer’s disease: diagnosis, therapy, and safety issues. Nanomedicine 7(5): 521-40. (2011).
[8]
Shaffer JL, Petrella JR, Sheldon FC, Choudhury KR, Calhoun VD, Coleman RE, et al. Azheimer’s disease neuroimaging initiative. Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers. Radiology 266(2): 583-91. (2013).
[9]
Goedert M, Klug A, Crowther RA. Tau protein, the paired helical filament and Alzheimer disease. J Alzheimers Dis 9(3): 195-207. (2006).
[10]
Braak H, Del Tredici K. Where, when, and in what form does sporadic Alzheimer disease begin? Curr Opin Neurol 25(6): 708-14. (2012).
[11]
Revett TJ, Baker GB, Jhamandas J, Kar S. Glutamate system, amyloid β peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci 38(1): 6-23. (2013).
[12]
Pasha S, Gupta K. Various drug delivery approaches to the central nervous system. Expert Opin Drug Deliv 7(1): 113-35. (2010).
[13]
Mayeux R, Stern Y. Epidemiology of Alzheimer Disease. Cold Spring Harb Perspect Med 2: a006239 (2012).
[14]
Sharma HS, Sharma A. Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology. Prog Brain Res 162: 245-73. (2007).
[15]
Pavan B, Dalpiaz A, Ciliberti N, Biondi C, Manfredini S, Vertuani S. Progress in drug delivery to the central nervous system by the prodrug approach. Molecules 13(5): 1035-65. (2008).
[16]
Lee G, Dallas S, Hong M, Bendayan R. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev 53(4): 569-96. (2001).
[17]
Pardridge WM. Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 3(2): 90-105. (2003).
[18]
Aulic S, Bolognesi ML, Legname G. Small-molecule theranostic probes: a promising future in neurodegenerative diseases. Int J Cell Biol 2013: 150952 (2013).
[19]
Akhter S, Ahmad MZ, Ahmad FJ, Storm G, Kok RJ. Gold nanoparticles in theranostic oncology: current state-of-the-art. Exp opin drug deliv 9(10): 1225-43 (2012).
[20]
Nazem A, Mansoori GA. Nanotechnology for Alzheimer’s disease detection and treatment. Insciences J 1(4): 169-93. (2011).
[21]
Andreasen N, Minthon L, Davidsson P, Vanmechelen E, Vanderstichele H, Winblad B, et al. Evaluation of CSF-tau and CSF-Abeta42 as diagnostic markers for Alzheimer disease in clinical practice. Arch Neurol 58(3): 373-9. (2001).
[22]
Hulstaert F, Blennow K, Ivanoiu A, Schoonderwaldt HC, Riemenschneider M, De Deyn PP, et al. Improved discrimination of AD patients using beta-amyloid (1-42) and tau levels in CSF. Neurology 52(8): 1555-62. (1999).
[23]
Maddalena A, Papassotiropoulos A, Muller-Tillmanns B, Jung HH, Hegi T, Nitsch RM, et al. Biochemical diagnosis of Alzheimer disease by measuring the cerebrospinal fluid ratio of phosphorylated tau protein to beta-amyloid peptide42. Arch Neurol 60(9): 1202-6. (2003).
[24]
Fluri F. Clinical nanomedicine: nanomedical approaches in Alzheimer’s disease. Eur J Nanomed 3(1): 7-12. (2010).
[25]
Georganopoulou DG, Chang L, Nam JM, Thaxton CS, Mufson EJ, Klein WL, et al. Nanoparticle based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci USA 102(7): 2273-6. (2005).
[26]
Svenson S. Theranostics: are we there yet? Mol Pharm 10(3): 848-56. (2013).
[27]
Moghimi SM. Bionanotechnologies for treatment and diagnosis of Alzheimer’s disease. Nanomedicine 7(5): 515-8. (2011).
[28]
Kang DY, Lee JH, Oh BK, Choi JW. Ultra-sensitive immunosensor for amyloid-beta (1-42) using scanning tunneling microscopy-based electrical detection. Biosens Bioelectron 24(5): 1431-6. (2009).
[29]
Neely A, Perry C, Varisli B, Singh AK, Arbneshi T, Senapati D, et al. Ultrasensitive and highly selective detection of Alzheimer’s disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano 3(9): 2834-40. (2009).
[30]
Viola KL, Sbarboro J, Sureka R, De M, Bicca MA, Wang J, et al. Towards non-invasive diagnostic imaging of early-stage Alzheimer’s disease. Nat Nanotechnol 10(1): 91-8. (2015).
[31]
Wadghiri YZ, Sigurdsson EM, Sadowski M, Elliott JI, Li Y, Scholtzova H, et al. Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn Reson Med 50(2): 293-302. (2003).
[32]
Yang J, Wadghiri YZ, Hoang DM, Tsui W, Sun Y, Chung E, et al. Detection of amyloid plaques targeted by USPIO-A-beta 1-42 in Alzheimer’s disease transgenic mice using magnetic resonance microimaging. Neuroimage 55(4): 1600-9. (2011).
[33]
Sillerud LO, Solberg NO, Chamberlain R, Orlando RA, Heidrich JE, Brown DC, et al. SPION-enhanced magnetic resonance imaging of Alzheimer’s disease plaques in AβPP/PS-1 transgenic mouse brain. J Alzheimers Dis 34(2): 349-65. (2013).
[34]
Nesterov EE, Skoch J, Hyman BT, Klunk WE, Bacskai BJ, Swager TM. In vivo optical imaging of amyloid aggregates in brain: design of fluorescent markers. Angew Chem Int Ed Engl 44(34): 5452-6. (2005).
[35]
Henley DB, May PC, Dean RA, Siemers ER. Development of semagacestat (LY450139), a functional gamma-secretase inhibitor, for the treatment of Alzheimer’s disease. Expert Opin Pharmacother 10: 1657-64. (2009).
[36]
Akhter S, Ahmad Z, Singh A, et al. Cancer targeted metallic nanoparticle: targeting overview, recent advancement and toxicity concern. Curr Pharm Des 17(18): 1834-50. (2011).
[37]
Alam Q, Alam MZ, Karim S, Gan SH, Kamal MA, Jiman Fatani A, et al. A nanotechnological approach to the management of Alzheimer disease and type 2 diabetes. CNS Neurol Disord Drug Targets 13(3): 478-86. (2014).
[38]
Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599): 1759-62. (2002).
[39]
Tokuraku K, Marquardt M, Ikezu T. Real-time imaging and quantification of amyloid-beta peptide aggregates by novel quantum-dot nanoprobes. PLoS One 4(12)e8492 (2009).
[40]
Xu G, Yong KT, Roy I, Mahajan SD, Ding H, Schwartz SA, et al. Bioconjugated quantum rods as targeted probes for efficient transmigration across an in vitro blood-brain barrier. Bioconjug Chem 19(6): 1179-85. (2008).
[41]
Ikeda K, Okada T, Sawada S, Akiyoshi K, Matsuzaki K. Inhibition of the formation of amyloid beta-protein fibrils using biocompatible nanogels as artificial chaperones. FEBS Lett 580(28-29): 6587-95. (2006).
[42]
Boridy S, Takahashi H, Akiyoshi K, Maysinger D. The binding of pullulan modified cholesteryl nanogels to Aβ oligomers and their suppression of cytotoxicity. Biomaterials 30(29): 5583-91. (2009).
[43]
Dugan LL, Lovett EG, Quick KL, Lotharius J, Lin TT, O’Malley KL. Fullerene-based Antioxidants and neurodegenerative disorders. Parkinsonism Relat Disord 7(3): 243-6. (2001).
[44]
Dugan LL, Gabrielsen JK, Yu SP, Lin TS, Choi DW. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol Dis 3(2): 129-35. (1996).
[45]
Huang H, Ou H, Hsieh S, Chiang L. Blockage of amyloid beta peptide-induced cytosolic free calcium by fullerenol-1, carboxylate C60 in PC12 cells. Life Sci 66(16): 1525-33. (2000).
[46]
Kotelnikova RA, Smolina AV, Grigoryev VV, Faingold II, Mischenko DV, Rybkin AY, et al. Influence of water-soluble derivatives of [60]fullerene on therapeutically important targets related to neurodegenerative diseases. MedChemComm 5(11): 1664-8. (2014).
[47]
Zhou X, Xi W, Luo Y, Cao S, Wei G. Interactions of a water-soluble fullerene derivative with amyloid-β protofibrils: dynamics, binding mechanism, and the resulting salt-bridge disruption. J Phys Chem B 118(24): 6733-41. (2014).
[48]
Xie L, Luo Y, Lin D, Xi W, Yang X, Wei G. The molecular mechanism of fullerene-inhibited aggregation of Alzheimer’s b-amyloid peptide fragment. Nanoscale 6(16): 9752-62. (2014).
[49]
D’Angelo B, Santucci S, Benedetti E, Di Loreto S, Phani RA, Falone S, et al. Cerium oxide nanoparticles trigger neuronal survival in a human Alzheimer disease model by modulating BDNF pathway. Curr Nanosci 5(2): 167-76. (2009).
[50]
Cimini A, D’Angelo B, Das S, Gentile R, Benedetti E, Singh V, et al. Antibody-conjugated PEGylated cerium oxide nanoparticles for specific targeting of Aβ aggregates modulate neuronal survival pathways. Acta Biomater 8(6): 2056-67. (2012).
[51]
Li M, Shi P, Xu C, Ren J, Qu X. Cerium oxide caged metal chelator: anti-aggregation and anti-oxidation integrated H2O2-responsive controlled drug release for potential Alzheimer’s disease treatment. Chem Sci 4(6): 2536-42. (2013).
[52]
Stiriba SE, Frey H, Haag R. Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy. Angew Chem Int Ed Engl 41(8): 1329-34. (2002).
[53]
Lowe TL, Strzelec A, Kiessling LL, Murphy RM. Structure-function relationships for inhibitors of β-amyloid toxicity containing the recognition sequence KLVFF. Biochemistry 40(26): 7882-9. (2001).
[54]
Chafekar SM, Malda H, Merkx M, Meijer EW, Viertl D, Lashuel HA, et al. Branched KLVFF tetramers strongly potentiate inhibition of β-amyloid aggregation. Chembiochem 8(15): 1857-64. (2007).
[55]
Kakio A, Nishimoto SI, Yanagisawa K, Kozutsumi Y, Matsuzaki K. Cholesterol-dependent formation of GM1 ganglioside-bound amyloid β-protein, an endogenous seed for Alzheimer amyloid. J Biol Chem 276(27): 24985-90. (2001).
[56]
Patel DA, Henry JE, Good TA. Attenuation of β-amyloid induced toxicity by sialic acid-conjugated dendrimeric polymers. Biochim Biophys Acta 1760(12): 1802-9. (2006).
[57]
Patel DA, Henry JE, Good TA. Attenuation of β-amyloid-induced toxicity by sialic acid-conjugated dendrimers: role of sialic acid attachment. Brain Res 1161: 95-105. (2007).
[58]
McLaurin J, Franklin T, Zhang X, Deng J, Fraser PE. Interactions of Alzheimer amyloid-β peptides with glycosaminoglycans effects on fibril nucleation and growth. Eur J Biochem 266(3): 1101-10. (1999).
[59]
Klajnert B, Cladera J, Bryszewska M. Molecular interactions of dendrimers with amyloid peptides: pH dependence. Biomacromolecules 7(7): 2186-91. (2006).
[60]
Ciepluch K, Weber M, Katir N, Caminade AM, El Kadib A, Klajnert B, et al. Effect of viologen-phosphorus dendrimers on acetylcholinesterase and butyrylcholinesterase activities. Int J Biol Macromol 54: 119-24. (2013).
[61]
Wasiak T, Ionov M, Nieznanski K, Nieznanska H, Klementieva O, Granell M, et al. Phosphorus dendrimers affect Alzheimer’s (Aβ1-28) peptide and MAP-tau protein aggregation. Mol Pharm 9(3): 458-69. (2011).
[62]
Kogan MJ, Bastus NG, Amigo R, Grillo-Bosch D, Araya E, Turiel A, et al. Nanoparticle mediated local and remote manipulation of protein aggregation. Nano Lett 6(1): 110-5. (2006).
[63]
Liao YH, Chang YJ, Yoshiike Y, Chang YC, Chen YR. Negatively charged gold nanoparticles inhibit Alzheimer’s amyloid-β fibrillization, induce fibril dissociation and mitigate neurotoxicity. Small 8(23): 3631-9. (2012).
[64]
Prades R, Guerrero S, Araya E, Molina C, Salas E, Zurita E, et al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials 33(29): 7194-205. (2012).
[65]
Mansoori GA. Diamondoid Molecules. Advances in Chemical Physics 2007; 207-58.
[66]
Lipton SA. Paradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders. J Alzheimers Dis 6: 61-74. (2004).
[67]
Sozio P, Cerasa LS, Laserra S, Cacciatore I, Cornacchia C, Di Filippo ES, et al. Memantine-sulfur containing antioxidant conjugates as potential prodrugs to improve the treatment of Alzheimer’s disease. Eur J Pharm Sci 49(2): 187-98. (2013).
[68]
Gauthier S, Molinuevo JL. Benefits of combined cholinesterase inhibitor and memantine treatment in moderate-severe Alzheimer’s disease. Alzheimers Dement 9(3): 326-31. (2013).
[69]
Ahmad MZ, Akhter S, Mohsin N, Abdel-Wahab BA, Ahmad J, Warsi MH, et al. Transformation of curcumin from food additive to multifunctional medicine: nanotechnology bridging the gap. Curr Drug Discov Technol 11(3): 197-213. (2014).
[70]
Ringman JM, Frautschy SA, Cole GM, Masterman DL, Cummings JL. A potential role of the curry spice curcumin in Alzheimer’s disease. Curr Alzheimer Res 2(2): 131-6. (2005).
[71]
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm 4(6): 807-18. (2007).
[72]
Mulik RS, Monkkonen J, Juvonen RO, Mahadik KR, Paradkar AR. ApoE3 mediated poly(butyl) cyanoacrylate nanoparticles containing curcumin: study of enhanced activity of curcumin against beta amyloid induced cytotoxicity using in vitro cell culture model. Mol Pharm 7(3): 815-25. (2010).
[73]
Doggui S, Sahni JK, Arseneault M, Dao L, Ramassamy C. Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line. J Alzheimers Dis 30(2): 377-92. (2012).
[74]
Mathew A, Fukuda T, Nagaoka Y, Hasumura T, Morimoto H, Yoshida Y, et al. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One 7(3): e32616 (2012).
[75]
Lazar AN, Mourtas S, Youssef I, Parizot C, Dauphin A, Delatour B, et al. Curcumin-conjugated nanoliposomes with high affinity for Aβ deposits: possible applications to Alzheimer disease. Nanomedicine 9(5): 712-21. (2013).
[76]
Cheng KK, Yeung CF, Ho SW, Chow SF, Chow AHL, Baum L. Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer’s disease Tg2576 Mice. AAPS J 15(2): 324-36. (2013).
[77]
Gauthier S, Juby A, Dalziel W, Rehel B, Schecter R. Effects of rivastigmine on common symptomatology of Alzheimer’s disease. Curr Med Res Opin 26(5): 1149-60. (2010).
[78]
Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res 1200: 159-68. (2008).
[79]
Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B. Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur J Pharm Biopharm 70(1): 75-84. (2008).
[80]
Joshi SA, Chavhan SS, Sawant KK. Rivastigmine-loaded PLGA and PBCA nanoparticles: preparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur J Pharm Biopharm 76(2): 189-99. (2010).
[81]
Fazil M, Md S, Haque S, Kumar M, Baboota S, Sahni JK, et al. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci 47(1): 6-15. (2012).
[82]
Li W, Zhou Y, Zhao N, Hao B, Wang X, Kong P. Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. Environ Toxicol Pharmacol 34(2): 272-9. (2012).
[83]
Ismail MF, Elmeshad AN, Salem NA. Potential therapeutic effect of nanobased formulation of rivastigmine on rat model of Alzheimer’s disease. Int J Nanomedicine 8: 393-406. (2013).
[84]
Wavikar PR, Vavia PR. Rivastigmine-loaded in situ gelling nanostructured lipid carriers for nose to brain delivery. J Liposome Res 25(2): 141-9 (215).
[85]
Yang Z, Zhang Y, Yang Y, Sun L, Han D, Li H, et al. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine 6(3): 427-41. (2010).
[86]
Pike CJ, Carroll JC, Rosario ER, Barron AM. Protective actions of sex steroid hormones in Alzheimer’s disease. Front Neuroendocrinol 30(2): 239-58. (2009).
[87]
Amtul Z, Wang L, Westaway D, Rozmahel RF. Neuroprotective mechanism conferred by 17β-estradiol on the biochemical basis of Alzheimer’s disease. Neuroscience 169(2): 781-6. (2010).
[88]
Mittal G, Sahana DK, Bhardwaj V, Ravi Kumar MN. Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release 119(1): 77-85. (2007).
[89]
Lam FC, Liu R, Lu P, Shapiro AB, Renoir JM, Sharom FJ, et al. β-Amyloid efflux mediated by P-glycoprotein. J Neurochem 76(4): 1121-8. (2001).
[90]
He W, Horn SW, Hussain MD. Improved bioavailability of orally administered mifepristone from PLGA nanoparticles. Int J Pharm 334(1-2): 173-8. (2007).
[91]
Mittal G, Carswell H, Brett R, Currie S, Kumar MNVR. Development and evaluation of polymer nanoparticles for oral delivery of estradiol to rat brain in a model of Alzheimer’s pathology. J Control Release 150(2): 220-8. (2011).
[92]
Rezai-Zadeh K, Arendash GW, Hou H, Fernandez F, Jensen M, Runfeldt M, et al. Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res 1214: 177-87. (2008).
[93]
Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med 362(4): 329-44. (2010).
[94]
Vassar R. β-secretase (BACE) as a drug target for Alzheimer’s disease. Adv Drug Deliv Rev 54(12): 1589-602. (2002).
[95]
Rajendran L, Schneider A, Schlechtingen G, Weidlich S, Ries J, Braxmeier T, et al. Efficient inhibition of the Alzheimer’s disease β-secretase by membrane targeting. Science 320(5875): 520-3. (2008).
[96]
Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD. Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int J Pharm 389(1-2): 207-12. (2010).
[97]
Zhang J, Zhou X, Yu Q, Yang L, Sun D, Zhou Y, et al. Epigallocatechin-3-gallate (EGCG)-stabilized selenium nanoparticles coated with Tet-1 peptide to reduce amyloid-β aggregation and cytotoxicity. ACS Appl Mater Interfaces 6(11): 8475-87. (2014).
[98]
Ahmad MZ, Ahmad J, Amin S, Rahman M, Anwar M, Mallick N, et al. Role of nanomedicines in delivery of anti-Acetylcholinesterase compounds to the brain in Alzheimer’s disease. CNS Neurol Disord Drug Targets 13(8): 1315-24. (2014).
[99]
Pangeni R, Sahni JK, Ali J, Sharma S, Baboota S. Resveratrol: review on therapeutic potential and recent advances in drug delivery. Expert Opin Drug Deliv 11(8): 1285-98. (2014).
[100]
Kim YA, Lim SY, Rhee SH, Park KY, Kim CH, Choi BT, et al. Resveratrol inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression in beta-amyloid-treated C6 glioma cells. Int J Mol Med 17(6): 1069-75. (2006).
[101]
Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem 280(45): 37377-82. (2005).
[102]
Bastianetto S, Zheng WH, Quirion R. Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide related toxicity in cultured hippocampal neurons. Br J Pharmacol 131(4): 711-20. (2000).
[103]
Lu X, Ji C, Xu H, Li X, Ding H, Ye M, et al. Resveratrol-loaded polymeric micelles protect cells from Aβ-induced oxidative stress. Int J Pharm 375(1-2): 89-96. (2009).
[104]
Frozza RL, Bernardi A, Hoppe JB, Meneghetti AB, Matte A, Battastini AMO, et al. Neuroprotective effects of resveratrol against Aβ administration in rats are improved by lipid-core nanocapsules. Mol Neurobiol 47(3): 1066-80. (2013).
[105]
da Rocha Lindner G, Khalil NM, Mainardes RM. Resveratrol-loaded polymeric nanoparticles: validation of an HPLC-PDA method to determine the drug entrapment and evaluation of its antioxidant activity. Sci World J 2013: 506083 (2013).
[106]
Bush AI. Drug development based on the metals hypothesis of Alzheimer’s disease. J Alzheimers Dis 15(2): 223-40. (2008).
[107]
Cui Z, Lockman PR, Atwood CS, Hsu CH, Gupte A, Allen DD, et al. Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer’s and other CNS diseases. Eur J Pharm Biopharm 59(2): 263-72. (2005).
[108]
Curtain C, Ali F, Volitakis I, Cherny R, Norton R, Beyreuther K, et al. Alzheimer’s disease amyloid- binds Cu and Zn to generate an allosterically-ordered membrane-penetrating structure containing SOD-like subunits. J Biol Chem 276(23): 20466-73. (2001).
[109]
Liu G, Men P, Harris PL, Rolston RK, Perry G, Smith MA. Nanoparticle iron chelators: a new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neurosci Lett 406(3): 189-93. (2006).
[110]
Liu G, Men P, Kudo W, Perry G, Smith MA. Nanoparticle-chelator conjugates as inhibitors of amyloid-β aggregation and neurotoxicity: A novel therapeutic approach for Alzheimer disease. Neurosci Lett 455(3): 187-90. (2009).
[111]
Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 60(12): 1685-91. (2003).
[112]
Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30(3): 665-76. (2001).
[113]
Mufamadi MS, Choonara YE, Kumar P, Modi G, Naidoo D, Ndesendo VM, et al. Surface-engineered nanoliposomes by chelating ligands for modulating the neurotoxicity associated with β-amyloid aggregates of Alzheimer’s disease. Pharm Res 29(11): 3075-89. (2012).
[114]
Ahmad J, Akhter S, Rizwanullah M, Amin S, Rahman M, Ahmad MZ, et al. Nanotechnology-based inhalation treatments for lung cancer: state of the art. Nanotechnol Sci Appl 8: 55-66. (2015).
[115]
Rahman M, Ahmad MZ, Ahmad J, Firdous J, Ahmad FJ, Mushtaq G, et al. Role of graphene nano-Composites in cancer therapy: Theranostic applications, metabolic fate and toxicity issues. Curr Drug Metab 16(5): 397-409. (2015).
[116]
Rahman M, Akhter S, Ahmad MZ, Ahmad J, Addo RT, Ahmad FJ, et al. Emerging advances in cancer nanotheranostics with graphene nanocomposites: opportunities and challenges. Nanomedicine (Lond) 10(15): 2405-22. (2015).
[117]
Batrakova EV, Li S, Alakhov VY, Miller DW, Kabanov AV. Optimal structure requirements for pluronic block copolymers in modifying P-glycoprotein drug efflux transporter activity in bovine brain microvessel endothelial cells. J Pharmacol Exp Ther 304(2): 845-54. (2003).
[118]
Parhamifar L, Larsen AK, Hunter AC, Andresen TL, Moghimi SM. Polycation cytotoxicity: a delicate matter for nucleic acid therapy-focus on polyethylenimine. Soft Matter 6(17): 4001-9. (2010).
[119]
Kabanov AV, Batrakova EV, Alakhov VY. An essential relationship between ATP depletion and chemosensitizing activity of Pluronic block copolymers. J Control Release 91(1-2): 75-83. (2003).
[120]
Bhabra G, Sood A, Fisher B, Cartwright L, Saunders M, Evans WH, et al. Nanoparticles can cause DNA damage across a cellular barrier. Nat Nanotechnol 4(12): 876-83. (2009).
[121]
Moghimi SM, Andersen AJ, Hashemi SH, Lettiero B, Ahmadvand D, Hunter AC, et al. Complement activation cascade triggered by PEG-PL engineered nanomedicines and carbon nanotubes: the challenges ahead. J Control Release 146(2): 175-81. (2010).
[122]
Hamad I, Al-Hanbali O, Hunter AC, Rutt KJ, Andresen TL, Moghimi SM. Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere-serum interface: implications for stealth nanoparticle engineering. ACS Nano 4(11): 6629-38. (2010).
[123]
Itagaki S, Akiyama H, Saito H, McGeer PL. Ultrastructural localization of complement membrane attack complex (MAC)-like immunoreactivity in brains of patients with Alzheimer’s disease. Brain Res 645(1-2): 78-84. (1994).
[124]
Rozemuller JM, Bots GT, Roos RA, Eikelenboom P. Acute phase proteins but not activated microglial cells are present in parenchymal β/A4 deposits in the brains of patients with hereditary cerebral hemorrhage with amyloidosis-Dutch type. Neurosci Lett 140(2): 137-40. (1992).
[125]
Yasojima K, Schwab C, McGeer EG, McGeer PL. Up-regulated production and activation of the complement system in Alzheimer’s disease brain. Am J Pathol 154(3): 927-36. (1999).
[126]
Webster S, Bonnell B, Rogers J. Charge-based binding of complement component C1q to the Alzheimer amyloid β-peptide. Am J Pathol 150(5): 1531-6. (1997).
[127]
McGeer PL, McGeer EG. The possible role of complement activation in Alzheimer disease. Trends Mol Med 8(11): 519-23. (2002).
[128]
Yang FY, Lin YS, Kang KH, Chao TK. Reversible blood-brain barrier disruption by repeated transcranial focused ultrasound allows enhanced extravasation. J Control Release 150(1): 111-6. (2011).
[129]
Choi JJ, Feshitan JA, Baseri B, Wang S, Tung YS, Borden MA, et al. Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo. IEEE Trans Biomed Eng 57(1): 145-54. (2010).
[130]
Hwang JH, Brayman AA, Reidy MA, Matula TJ, Kimmey MB, Crum LA. Vascular effects induced by combined 1-MHz ultrasound and microbubble contrast agent treatments in vivo. Ultrasound Med Biol 31(4): 553-64. (2005).
[131]
McDannold N, Vykhodtseva N, Hynynen K. Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity. Phys Med Biol 51(4): 793-807. (2006).
[132]
Hynynen K. Ultrasound for drug and gene delivery to the brain. Adv Drug Deliv Rev 60(10): 1209-17. (2008).
[133]
Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH. Convection enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 91(6): 2076-80. (1994).
[134]
Hadaczek P, Yamashita Y, Mirek H, Tamas L, Bohn MC, Noble C, et al. The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther 14(1): 69-78. (2006).
[135]
Eberling JL, Jagust WJ, Christine CW, Starr P, Larson P, Bankiewicz KS, et al. Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70(21): 1980-3. (2008).
[136]
Kunwar S. Convection enhanced delivery of IL13-PE38QQR for treatment of recurrent malignant glioma: presentation of interim findings from ongoing phase 1 studies. Acta Neurochir Suppl 88: 105-11. (2003).
[137]
Skaat H, Margel S. Synthesis of fluorescent-maghemite nanoparticles as multimodal imaging agents for amyloid-β fibrils detection and removal by a magnetic field. Biochem Biophys Res Commun 386: 645-9. (2009).
[138]
Choi JS, Choi HJ, Jung DC, Lee JH, Cheon J. Nanoparticle assisted magnetic resonance imaging of the early reversible stages of amyloid β self-assembly. Chem Commun 19: 2197-9. (2008).
[139]
Hartig W, Kacza J, Paulke B, Grosche J, Bauer U, Hoffmann A, et al. In vivo labelling of hippocampal-amyloid in triple-transgenic mice with a fluorescent acetylcholinesterase inhibitor released from nanoparticles. Eur J Neurosci 31: 99-109. (2010).
[140]
Siegemund T, Paulke BR, Schmiedel H, Bordag N, Hoffmann A, Harkany T, et al. Thioflavins released from nanoparticles target fibrillar amyloid β in the hippocampus of APP/PS1 transgenic mice. Int J Dev Neurosci 24: 195-201. (2006).
[141]
Kulkarni PV, Roney CA, Antich PP, Bonte FJ, Raghu AV, Aminabhavi TM. Quinoline-n-butylcyanoacrylate-based nanoparticles for brain targeting for the diagnosis of Alzheimer’s disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(1): 35-47. (2010).
[142]
Roney CA, Arora V, Kulkarni PV, Antich PP, Bonte FJ. Nanoparticulate radiolabelled quinolines detect amyloid plaques in mouse models of Alzheimer’s disease. Int J Alzheimers Dis 2009: 481031 (2009).
[143]
Zhang D, Fa HB, Zhou JT, Li S, Diao XW, Yin W. The detection of β-amyloid plaques in an Alzheimer’s disease rat model with DDNP-SPIO. Clin Radiol 70(1): 74-80. (2015).
[144]
Jaruszewski KM, Curran GL, Swaminathan SK, Rosenberg JT, Grant SC, Ramakrishnan S, et al. Multimodal Nanoprobes to target cerebrovascular amyloid in Alzheimer’s disease brain. Biomaterials 35: 1967-76. (2014).
[145]
Zhang C, Wan X, Zheng X, Shao X, Liu Q, Zhang Q, et al. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice. Biomaterials 35(1): 456-65. (2014).
[146]
Agyare EK, Jaruszewski KM, Curran GL, Rosenberg JT, Grant SC, Lowe VJ, et al. Engineering theranostic nanovehicles capable of targeting cerebrovascular amyloid deposits. J Control Release 185: 121-9. (2014).
[147]
Skaat H, Corem-Slakmon E, Grinberg I, Last D, Goez D, Mardor Y, et al. Antibody-conjugated, dual-modal, near-infrared fluorescent iron oxide nanoparticles for antiamyloidgenic activity and specific detection of amyloid-β fibrils. Int J Nanomedicine 8: 4063-76. (2013).
[148]
Dehvari K, Lin KS. Synthesis, characterization and potential applications of multifunctional PEO-PPOPEO- magnetic drug delivery system. Curr Med Chem 19(30): 5199-204. (2012).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy