Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

In-silico Evidences of Regulatory Roles of WT1 Transcription Factor Binding Sites on the Intervening Sequences of the Human Bcl-2 Gene

Author(s): Gholampour-Faroji Nazanin, Haddad-Mashadrizeh Aliakbar*, Mirahmadi Mahdi, Monhemi Hassan, Shahreki-Mojahed Safoora, Bahrami Ahmad Reza, Housaindokht Mohammadreza, Matin M. Maryam, Zomorodipour Alireza, Dadjoo Parisa and Nohtani Mahdi

Volume 13, Issue 3, 2018

Page: [260 - 272] Pages: 13

DOI: 10.2174/1574893612666170428114551

Price: $65

Abstract

Background: Intervening sequences (introns) have significant effects on genomic regulations and molecular evolution. So, it deserves a deeper analysis for better understanding the possible regulatory roles of these regions.

Objective and Method: Accordingly, the intron 2 (In-2) of the human B-cell lymphoma 2 (hBcl2) gene, with regard to the size of the In-2 as well as critical roles of the gene in the homeostatic of the cellular balance, was analyzed by using in-silico approaches to identify In-2 transcription factor binding (In2-TFBs) motifs.

Results: Our analysis revealed 966 motifs of 118 different TFBs types which were scattered throughout both the strands of the complete sequence of the gene, in particular on the In-2, with significant pattern of distribution and repetition. Distribution pattern of these motifs revealed that most of them were accumulated in narrow regions of the In-2, far from the area of the splicing sites. Moreover, it was observed that except for WT1-TFBs, Gfi-1-TFBs, GAGA-TFBs, all other motifs were sporadic, with irregular and random distribution. Among these motifs, WT1-TFBs showed the highest frequencies which were situated in four neighboring regions of the In-2, by a close linear relationship to Sp1-TFBs. Furthermore, the sequence logos of the WT1-TFBs showed that they ranged in size from 22 up to 45 bps and were enriched with G and T nucleotides. Meanwhile, the binding affinity of WT1-TF to WT1- TFBs revealed significant differences compared to the other sequences of the gene as negative control.

Conclusion: In general, this data provides supporting evidences for the existence of regulatory regions in the intronic sequences of the hBcl2 gene especially in the In-2, and also represents new targets for WT1-TF which might contribute to hBcl2 regulation and apoptosis process.

Keywords: hBcl2 gene, intron, gene regulation, TFBs, WT1.

Graphical Abstract


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy