Abstract
Background: Bioluminescence in Ca2+-binding photoproteins is an intramolecular reaction triggered by the addition of Ca2+. A comparative study has been done on Ca2+-depleted and Ca2+-loaded apo-mnemiopsin to understand the structural transition of the photoprotein by Ca2+ binding. Ca2+ is removed by TCA (trichloroacetic acid) precipitation to obtain Ca2+-depleted apomnemiopsin.
Method: UV–visible, CD and fluorescence spectroscopic studies demonstrate that the addition of Ca2+ is brought about by the overall structure of apo-mnemiopsin becomes more open in a concentration- dependent manner without significantly influencing the secondary structure and indicate that the Ca2+-depleted form of apo-mnemiopsin, in contrast to most other EF-hand calcium binding proteins, adopt a closed conformation when compared to the Ca2+-loaded form. On the other hand, dynamic quenching and limited proteolysis analysis revealed that Ca2+-loaded apo-mnemiopsin became much more flexible than Ca2+ free apo-mnemiopsin. Results: It seems that increased flexibility of the protein, which occurs due to calcium binding, is a critical factor in oxidative decarboxylation reaction on coelenterazine and consequently light emission.Keywords: EF-hand calcium-binding proteins, photoproteins, mnemiopsin, conformational switch, flexibility, proteolysis.
Graphical Abstract