[1]
Silva, A.P.; Santos, J.M.; Martins, A.J. Mutations in the voltage-gated sodium channel gene of anophelines and their association with resistance to pyrethroids - a review. Parasit. Vectors, 2014, 7, 450.
[2]
World Health Organization. WHO Recommended Long-Lasting Insecticidal Mosquito Nets; Geneva, 2009.
[3]
Ohno, N.; Fujimoto, K.; Okuno, Y.; Mizutani, T.; Hirano, M.; Itaya, N.; Honda, T.; Yoshioka, H. 2-Arylalkanoates, a new group of synthetic pyrethroid esters not containing cyclopropanecarboxylates. Pestic. Sci., 1976, 7, 241-246.
[4]
Rinkevich, F.D.; Du, Y.; Dong, K. Diversity and convergence of sodium channel mutations involved in resistance to pyrethroids. Pestic. Biochem. Physiol., 2013, 106(3), 93-100.
[5]
Du, Y.; Nomura, Y.; Satar, G.; Hu, Z.; Nauen, R.; He, S.Y.; Zhorov, B.S.; Dong, K. Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel. Proc. Natl. Acad. Sci. USA, 2013, 110(29), 11785-11790.
[6]
Zhong, D.; Chang, X.; Zhou, G.; He, Z.; Fu, F.; Yan, Z.; Zhu, G.; Xu, T.; Bonizzoni, M.; Wang, M-H.; Cui, L.; Zheng, B.; Chen, B.; Yan, G. Relationship between knockdown resistance, metabolic detoxification and organismal resistance to pyrethroids in Anopheles sinensis. PLoS One, 2013, 8(2), e55475.
[7]
Jeschke, P. The unique role of fluorine in the design of active ingredients for modern crop protection. ChemBioChem, 2004, 5(5), 571-589.
[8]
O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C-F bond. Chem. Soc. Rev., 2008, 37(2), 308-319.
[9]
Denholm, I.; Farnham, A.W.; O’Dell, K.; Sawicki, R.M. Factors affecting resistance to insecticides in house-flies, Musca domestica L. (Diptera: Muscidae). I. Long-term control with bioresmethrin of flies with strong pyrethroid-resistance potential. Bull. Entomol. Res., 1983, 73, 481-489.
[11]
Ujihara, K.; Mori, T.; Iwasaki, T.; Sugano, M.; Shono, Y.; Matsuo, N. Metofluthrin: a potent new synthetic pyrethroid with high vapor activity against mosquitoes. Biosci. Biotechnol. Biochem., 2004, 68(1), 170-174.
[12]
Xu, S.; Li, H.; Wang, X.; Chen, C.; Cao, M.; Cao, X. Asymmetric syntheses and bio-evaluation of novel chiral esters derived from substituted tetrafluorobenzyl alcohol. Bioorg. Med. Chem. Lett., 2014, 24(12), 2734-2736.
[13]
Li, H.; Chen, C.; Cao, X. Essential oils-oriented chiral esters as potential pesticides: asymmetric syntheses, characterization and bio-evaluation. Ind. Crops Prod., 2015, 76, 432-436.
[14]
Cao, X.; Li, H.; Han, X.; Wang, M.; Xu, S.; Chen, C. Pyrethroid compound, its preparation method and application Faming Zhuanli Shenqing, CN103319343A, 2013.
[15]
Muñiz, K.; Iesato, A.; Nieger, M. Diamination of olefins: synthesis, structures and reactivity of osmaimidazolidines. Chem. Eur. J., 2003, 9(22), 5581-5596.
[16]
Cao, X.; Li, F.; Hu, M.; Lu, W.; Yu, G-A.; Liu, S.H. Chiral γ-aryl-1H-1, 2, 4-triazole derivatives as highly potential antifungal agents: design, synthesis, structure and biological evaluation. J. Agric. Food Chem., 2008, 56, 11367-11375.
[17]
Cao, X.; Liu, F.; Lu, W.; Chen, G.; Yu, G-A.; Liu, S.H. Regio- and distereoselective conjugate addition of Grignard reagents to aryl substituted α,β-unsaturated carbonyl compounds derived from Oppolzer’s sultam. Tetrahedron, 2008, 64, 5629-5636.
[18]
Xu, H.; Zhang, N.; Casida, J.E. Insecticides in Chinese medicinal plants: survey leading to jacaranone, a neurotoxicant and glutathione-reactive quinol. J. Agric. Food Chem., 2003, 51(9), 2544-2547.
[19]
Ke, S.; Zhang, Z.; Long, T.; Liang, Y.; Yang, Z. Novel salicylamide derivatives incorporating neonicotinoid pharmacophore: design, synthesis, characterization, and biological evaluation. Med. Chem. Res., 2013, 22, 3621-3628.