Abstract
Mass spectrometry imaging (MSI) can uniquely detect thousands of compounds allowing both their identification and localization within biological tissue samples. MSI is an interdisciplinary science that crosses the borders of physics, chemistry and biology, and enables local molecular analysis at a broad range of length scales: From the subcellular level to whole body tissue sections. The spatial resolution of some mass spectrometers now allows nano-scale research, crucial for studies in nanomedicine. Recent developments in MSI have enabled the optimization and localization of drug delivery with nanoparticles within the body and in specific organs such as kidney, liver and brain. Combining MSI with nanomedicine has vast potential, specifically in the treatment of neurological disorders, where effective drug delivery has been hampered by the blood-brain barrier. This review provides an introduction to MSI and its different technologies, with the application of MSI to nanomedicine and the different possibilities that MSI offers to study molecular signals in the brain. Finally, we provide an outlook for the future and exciting potential of MSI in nanoparticle-related research.
Keywords: Mass spectrometry imaging, nanomedicine, brain, nanoparticles, mass spectrometers, neurological disorders.
Current Pharmaceutical Design
Title:Mass Spectrometry Imaging in Nanomedicine: Unraveling the Potential of MSI for the Detection of Nanoparticles in Neuroscience
Volume: 23 Issue: 13
Author(s): Florian P.Y. Barre, Ron M.A. Heeren and Nina Ogrinc Potocnik*
Affiliation:
- The Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Universitetitssingel 50, 6229 HX Maastricht,Netherlands
Keywords: Mass spectrometry imaging, nanomedicine, brain, nanoparticles, mass spectrometers, neurological disorders.
Abstract: Mass spectrometry imaging (MSI) can uniquely detect thousands of compounds allowing both their identification and localization within biological tissue samples. MSI is an interdisciplinary science that crosses the borders of physics, chemistry and biology, and enables local molecular analysis at a broad range of length scales: From the subcellular level to whole body tissue sections. The spatial resolution of some mass spectrometers now allows nano-scale research, crucial for studies in nanomedicine. Recent developments in MSI have enabled the optimization and localization of drug delivery with nanoparticles within the body and in specific organs such as kidney, liver and brain. Combining MSI with nanomedicine has vast potential, specifically in the treatment of neurological disorders, where effective drug delivery has been hampered by the blood-brain barrier. This review provides an introduction to MSI and its different technologies, with the application of MSI to nanomedicine and the different possibilities that MSI offers to study molecular signals in the brain. Finally, we provide an outlook for the future and exciting potential of MSI in nanoparticle-related research.
Export Options
About this article
Cite this article as:
Barre P.Y. Florian, Heeren M.A. Ron and Potocnik Ogrinc Nina*, Mass Spectrometry Imaging in Nanomedicine: Unraveling the Potential of MSI for the Detection of Nanoparticles in Neuroscience, Current Pharmaceutical Design 2017; 23 (13) . https://dx.doi.org/10.2174/1381612823666170111112550
DOI https://dx.doi.org/10.2174/1381612823666170111112550 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Application of Affinity Selection-Mass Spectrometry Assays to Purification and Affinity-Based Screening of the Chemokine Receptor CXCR4
Combinatorial Chemistry & High Throughput Screening Insights into Cellular Uptake of Nanoparticles
Current Drug Delivery One-step Separation and Purification of Four Phenolic Acids from Stenoloma chusanum (L.) Ching by Medium-pressure Liquid Chromatography and High-speed Counter-current Chromatography
The Natural Products Journal Near Infrared Spectroscopic Combined with Partial Least Squares and Radial Basis Function Neural Network to Analyze Paclitaxel Concentration in Rat Plasma
Combinatorial Chemistry & High Throughput Screening Essential Structure of the κ Opioid Receptor Agonist Nalfurafine for Binding to the κ Receptor
Current Pharmaceutical Design Antifungal Therapy of Aspergillosis of the Central Nervous System and Aspergillus Endophthalmitis
Current Pharmaceutical Design Modulation of the TRPV1 Channel: Current Clinical Trials and Recent Patents with Focus on Neurological Conditions
Recent Patents on CNS Drug Discovery (Discontinued) Antioxidant Activity of Galantamine and Some of its Derivatives
Current Medicinal Chemistry Synthesis of resveratrol acrylamides derivatives and biological evaluation of their anti-proliferative effect on cancer cell lines
Letters in Drug Design & Discovery Aspirin and Other Non-Steroidal Anti-Inflammatory Drugs as Cyclooxygenase Inhibitors: State of the Art, Barriers and Perspectives
Current Computer-Aided Drug Design On the Interaction Between Human IQGAP1 and Actin
Protein & Peptide Letters Metabolomics as a Tool for Drug Discovery and Personalised Medicine. A Review
Current Topics in Medicinal Chemistry Electrohydrodynamic Preparation of Nanomedicines
Current Topics in Medicinal Chemistry Drug-Delivery Systems of Green Tea Catechins for Improved Stability and Bioavailability
Current Medicinal Chemistry Molecular Aspects of Intestinal Radiation-Induced Fibrosis
Current Molecular Medicine Area, Age and Gender Dependence of the Nucleoside System in the Brain: a Review of Current Literature
Current Topics in Medicinal Chemistry The Molecular Mechanisms for the Antitumorigenic Effect of Curcumin
Current Medicinal Chemistry - Anti-Cancer Agents N-Containing Ag(I) and Hg(II) Complexes: A New Class of Antibiotics
Current Topics in Medicinal Chemistry Modulating Poly (ADP-Ribose) Polymerase Activity: Potential for the Prevention and Therapy of Pathogenic Situations Involving DNA Damage and Oxidative Stress
Current Pharmaceutical Biotechnology Application of Microfluidics in Single-cell Manipulation, Omics and Drug Development
Current Medicinal Chemistry