Abstract
Background: Breast cancer is a systemic disease which has challenged physicians worldwide as it is the most predominant cancer in women often leading to fatality. One of the types of treatment is chemotherapy which includes targeted oral or intravenous cancer-killing drugs. Treatment options are often limited to surgery and/or chemotherapy.
Objective: The discovery and design of new small molecule estrogen inhibitors is necessitated in order to circumvent the problem of drug-induced resistance in chemotherapy resulting in disease relapse. Chemoinformatics facilitates the design, selection and synthesis of new drug candidates for breast cancer by providing efficient in silico techniques for prediction of favourable ADMET properties, and structural descriptors to profile druggability of a compound. Method: Several molecules selected from docking studies were synthesized and evaluated for their biological activities on the MCF-7 (human breast cancer) cell line. Results: These estrogen inhibitors displayed good inhibitory activity with high selectivity and hence can be further progressed as drug candidates effective against breast cancer. Conclusion: It is for the first time that N-(2, 4-dinitrophenyl)-3-oxo-3-phenyl-N-(aryl) phenylpropanamide derivatives were reported to be biological active as potential breast cancer inhibitors.Keywords: Breast cancer, docking, estradiol, estrogen receptor α , virtual screening.
Graphical Abstract