Abstract
Background: Drug-Target Interactions (DTI) play a crucial role in discovering new drug candidates and finding new proteins to target for drug development. Although the number of detected DTI obtained by high-throughput techniques has been increasing, the number of known DTI is still limited. On the other hand, the experimental methods for detecting the interactions among drugs and proteins are costly and inefficient.
Objective: Therefore, computational approaches for predicting DTI are drawing increasing attention in recent years. In this paper, we report a novel computational model for predicting the DTI using extremely randomized trees model and protein amino acids information.
Method: More specifically, the protein sequence is represented as a Pseudo Substitution Matrix Representation (Pseudo-SMR) descriptor in which the influence of biological evolutionary information is retained. For the representation of drug molecules, a novel fingerprint feature vector is utilized to describe its substructure information. Then the DTI pair is characterized by concatenating the two vector spaces of protein sequence and drug substructure. Finally, the proposed method is explored for predicting the DTI on four benchmark datasets: Enzyme, Ion Channel, GPCRs and Nuclear Receptor.
Results: The experimental results demonstrate that this method achieves promising prediction accuracies of 89.85%, 87.87%, 82.99% and 81.67%, respectively. For further evaluation, we compared the performance of Extremely Randomized Trees model with that of the state-of-the-art Support Vector Machine classifier. And we also compared the proposed model with existing computational models, and confirmed 15 potential drug-target interactions by looking for existing databases.
Conclusion: The experiment results show that the proposed method is feasible and promising for predicting drug-target interactions for new drug candidate screening based on sizeable features.
Keywords: Drug-target interactions, pseudo substitution matrix representation, drug substructure fingerprint, extremely randomized trees, computational model.
Graphical Abstract
Current Protein & Peptide Science
Title:A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences
Volume: 19 Issue: 5
Author(s): Yu-an Huang, Zhu-hong You*Xing Chen*
Affiliation:
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011,China
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116,China
Keywords: Drug-target interactions, pseudo substitution matrix representation, drug substructure fingerprint, extremely randomized trees, computational model.
Abstract: Background: Drug-Target Interactions (DTI) play a crucial role in discovering new drug candidates and finding new proteins to target for drug development. Although the number of detected DTI obtained by high-throughput techniques has been increasing, the number of known DTI is still limited. On the other hand, the experimental methods for detecting the interactions among drugs and proteins are costly and inefficient.
Objective: Therefore, computational approaches for predicting DTI are drawing increasing attention in recent years. In this paper, we report a novel computational model for predicting the DTI using extremely randomized trees model and protein amino acids information.
Method: More specifically, the protein sequence is represented as a Pseudo Substitution Matrix Representation (Pseudo-SMR) descriptor in which the influence of biological evolutionary information is retained. For the representation of drug molecules, a novel fingerprint feature vector is utilized to describe its substructure information. Then the DTI pair is characterized by concatenating the two vector spaces of protein sequence and drug substructure. Finally, the proposed method is explored for predicting the DTI on four benchmark datasets: Enzyme, Ion Channel, GPCRs and Nuclear Receptor.
Results: The experimental results demonstrate that this method achieves promising prediction accuracies of 89.85%, 87.87%, 82.99% and 81.67%, respectively. For further evaluation, we compared the performance of Extremely Randomized Trees model with that of the state-of-the-art Support Vector Machine classifier. And we also compared the proposed model with existing computational models, and confirmed 15 potential drug-target interactions by looking for existing databases.
Conclusion: The experiment results show that the proposed method is feasible and promising for predicting drug-target interactions for new drug candidate screening based on sizeable features.
Export Options
About this article
Cite this article as:
Huang Yu-an, You Zhu-hong*, Chen Xing*, A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences, Current Protein & Peptide Science 2018; 19 (5) . https://dx.doi.org/10.2174/1389203718666161122103057
DOI https://dx.doi.org/10.2174/1389203718666161122103057 |
Print ISSN 1389-2037 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5550 |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers