Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

Centromeric Non-coding Transcription: Opening the Black Box of Chromosomal Instability?

Author(s): Rodrigo Caceres-Gutierrez and Luis A. Herrera*

Volume 18, Issue 3, 2017

Page: [227 - 235] Pages: 9

DOI: 10.2174/1389202917666161102095508

open access plus

Abstract

In eukaryotes, mitosis is tightly regulated to avoid the generation of numerical chromosome aberrations, or aneuploidies. The aneuploid phenotype is a consequence of chromosomal instability (CIN), i.e., an enhanced rate of chromosome segregation errors, which is frequently found in cancer cells and is associated with tumor aggressiveness and increased tumor cell survival potential. To avoid the generation of aneuploidies, cells rely on the spindle assembly checkpoint (SAC), a widely conserved mechanism that protects the genome against this type of error. This signaling pathway stops mitotic progression before anaphase until all chromosomes are correctly attached to spindle microtubules. However, impairment of the SAC cannot account for the establishment of CIN because cells bearing this phenotype have a functional SAC. Hence, in cells with CIN, anaphase is not triggered until all chromosomes are correctly attached to spindle microtubules and congressed at the metaphase plate. Thus, an interesting question arises: What mechanisms actually mediate CIN in cancer cells? Recent research has shown that some pathways involved in chromosome segregation are closely associated to centromere-encoded non-coding RNA (cencRNA) and that these RNAs are deregulated in abnormal conditions, such as cancer. These mechanisms may provide new explanations for chromosome segregation errors. The present review discusses some of these findings and proposes novel mechanisms for the establishment of CIN based on regulation by cencRNA.

Keywords: Chomosome segregation, Chromosome instability, Centromere, Non-coding RNA.

Next »
Graphical Abstract


© 2024 Bentham Science Publishers | Privacy Policy