Abstract
Nonsense-mediated mRNA decay (NMD) functions to ensure quality gene expression by degrading mRNAs that prematurely terminate translation. By so doing, it eliminates the production of potentially deleterious truncated proteins. NMD also degrades certain naturally occurring transcripts as a means of achieving proper levels of gene expression. With the exception of prokaryotes, NMD typifies all organisms that have been examined. As an example of its importance, NMD is required for the viability of mammalian blastocysts in culture as well as mammalian embryos in utero. The repertoire of factors that mediate NMD is larger in C. elegans, D. melanogaster, mammalian cells and, possibly, A. thaliana, than it is in S. cerevisiae and S. pombe. NMD requires not only a premature termination codon but also a downstream element. Whereas this element in S. cerevisiae, S. pombe, C. elegans, D. melanogaster and plants is debatably either a short cis-acting mRNA sequence or an abnormal 3 untranslated region, it is a splicing-generated exon junction complex of proteins in mammalian cells. In fact, NMD may have provided a selective pressure for where introns colonize within mammalian genes. There also appear to be differences among different eukaryotes as to whether NMD is restricted to newly synthesized mRNA or can also target steady-state mRNA. In summary, despite the conservation of NMD in eukaryotes, different mechanisms have evolved to define those premature termination codons that elicit NMD.
Keywords: nonsense-mediated mrna decay, rna surveillance, premature termination of translation, upf proteins
Current Genomics
Title: Nonsense-Mediated mRNA Decay: A Comparative Analysis of Different Species
Volume: 5 Issue: 3
Author(s): L. E. Maquat
Affiliation:
Keywords: nonsense-mediated mrna decay, rna surveillance, premature termination of translation, upf proteins
Abstract: Nonsense-mediated mRNA decay (NMD) functions to ensure quality gene expression by degrading mRNAs that prematurely terminate translation. By so doing, it eliminates the production of potentially deleterious truncated proteins. NMD also degrades certain naturally occurring transcripts as a means of achieving proper levels of gene expression. With the exception of prokaryotes, NMD typifies all organisms that have been examined. As an example of its importance, NMD is required for the viability of mammalian blastocysts in culture as well as mammalian embryos in utero. The repertoire of factors that mediate NMD is larger in C. elegans, D. melanogaster, mammalian cells and, possibly, A. thaliana, than it is in S. cerevisiae and S. pombe. NMD requires not only a premature termination codon but also a downstream element. Whereas this element in S. cerevisiae, S. pombe, C. elegans, D. melanogaster and plants is debatably either a short cis-acting mRNA sequence or an abnormal 3 untranslated region, it is a splicing-generated exon junction complex of proteins in mammalian cells. In fact, NMD may have provided a selective pressure for where introns colonize within mammalian genes. There also appear to be differences among different eukaryotes as to whether NMD is restricted to newly synthesized mRNA or can also target steady-state mRNA. In summary, despite the conservation of NMD in eukaryotes, different mechanisms have evolved to define those premature termination codons that elicit NMD.
Export Options
About this article
Cite this article as:
Maquat E. L., Nonsense-Mediated mRNA Decay: A Comparative Analysis of Different Species, Current Genomics 2004; 5 (3) . https://dx.doi.org/10.2174/1389202043349453
DOI https://dx.doi.org/10.2174/1389202043349453 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Three Decades of P-gp Inhibitors: Skimming Through Several Generations and Scaffolds
Current Medicinal Chemistry Adhesion Molecules in Lung Cancer: Implications in the Pathogenesis and Management
Current Pharmaceutical Design Liposome-Nanogel Structures for Future Pharmaceutical Applications: An Updated Review
Current Pharmaceutical Design The State-of-Art in Angiogenic Properties of Latex from Different Plant Species
Current Angiogenesis (Discontinued) Dendritic Cells and their Receptors in Antitumor Immune Response
Current Molecular Medicine Targeting Focal Adhesion Kinase in Neuroblastoma
Anti-Cancer Agents in Medicinal Chemistry Bis(thiosemicarbazone) Metal Complexes as Therapeutics for Neurodegenerative Diseases
Current Topics in Medicinal Chemistry Molecular Design and Clinical Development of VEGFR Kinase Inhibitors
Current Topics in Medicinal Chemistry CRISPR/Cas9 Genome Editing Tool: A Promising Tool for Therapeutic Applications on Respiratory Diseases
Current Gene Therapy Multifunctional Anti-Cancer Nano-Platforms are Moving to Clinical Trials
Current Drug Metabolism Thymic Nurse Cells Participate in Heterotypic Internalization and Repertoire Selection of Immature Thymocytes; Their Removal from the Thymus of Autoimmune Animals May be Important to Disease Etiology
Current Molecular Medicine Adverse Effects and Safety of Etirinotecan Pegol, a Novel Topoisomerase Inhibitor, in Cancer Treatment: A Systematic Review
Current Cancer Therapy Reviews Quantitative Structure-Activity Relationship Studies: Understanding the Mechanism of Tyrosine Kinase Inhibition
Current Enzyme Inhibition Anticancer Drugs Designed by Mother Nature: Ancient Drugs but Modern Targets
Current Pharmaceutical Design Angiotensin II Receptor Blocker as an Inverse Agonist: A Current Perspective
Current Hypertension Reviews Prevalence of HIV in Patients with Malignancy and of Malignancy in HIV Patients in a Tertiary Care Center from North India
Current HIV Research Reversal of Tumor Induced Dendritic Cell Paralysis: A Treatment Regimen Against Cancer
Current Immunology Reviews (Discontinued) Microtubule Targeting Agents: A Benchmark in Cancer Therapy
Current Drug Therapy The Re-Emergence of Aerosol Gene Delivery: A Viable Approach to Lung Cancer Therapy
Current Cancer Drug Targets Developments of Combretastatin A-4 Derivatives as Anticancer Agents
Current Medicinal Chemistry