Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

人工智能技术(自动分类器)在神经退行性疾病分子成像中的作用

作者: Silvia Cascianelli, Michele Scialpi, Serena Amici, Nevio Forini, Matteo Minestrini, Mario Luca Fravolini, Helmut Sinzinger and Orazio Schillaci, Barbara Palumbo.

卷 14, 期 2, 2017

页: [198 - 207] 页: 10

弟呕挨: 10.2174/1567205013666160620122926

价格: $65

摘要

人工智能(AI)是一个非常活跃的计算机科学的研究领域,旨在开发系统,模仿人类的智慧,并有助于许多人类活动,包括医学。在这篇综述中,我们提出了一些例子,利用AI技术,特别是自动分类,如人工神经网络(ANN),支持向量机(SVM),分类树(ClT)和集成方法,如随机森林(RF)能够分析正电子发射断层扫描(PET)获得的结果或单光子发射计算机断层扫描(SPECT)与神经退行性疾病的患者的扫描,特别是阿尔茨海默氏病。我们也把我们的注意力集中于技术的应用,对数据进行预处理降低其维数的特征选择或通过投影在一个更具代表性的区域(主成分分析- PCA或偏最小二乘- PLS -这些方法的例子)这是处理医疗数据的关键步骤,因为压缩病人的信息,并保留最有用的,以区分为正常和病理类是必要的。应用这些技术分类神经退行性疾病的患者提取分子成像数据的主要文献报道表明,越来越多的计算机辅助诊断系统的发展是非常有前途的诊断过程。

关键词: 阿尔茨海默病,计算机辅助诊断,痴呆,机器学习,分子成像,帕金森氏病,正电子发射断层扫描,单光子发射计算机断层扫描

[1]
Bishop CM. Pattern Recognition and Machine Learning (Information Science and Statistics) New York: Springer-Verlag. (2006)
[2]
Alpaydin E. Introduction to Machine Learning (Adaptive Computation and Machine Learning) USA The MIT Press. (2004)
[3]
Haller S, Lovblad KO, Giannakopoulos P, Van De Ville D. Multivariate pattern recognition for diagnosis and prognosis in clinical neuroimaging: state of the art, current challenges and future trends. Brain Topogr 27(3): 329-37. (2014)
[4]
Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph 31(4-5): 198-211. (2007)
[5]
Shiraishi J, Li Q, Appelbaum D, Doi K. Computer-aided diagnosis and artificial intelligence in clinical imaging. Semin Nucl Med 41(6): 449-62. (2011)
[6]
Palumbo B, Fravolini ML. To what extent can artificial neural network support nuclear medicine? Hell J Nucl Med 15(3): 180-3. (2012)
[7]
Preis O, Blake MA, Scott JA. Neural network evaluation of PET scans of the liver: a potentially useful adjunct in clinical interpretation. Radiology 258(3): 714-21. (2011)
[8]
Lemm S, Blankertz B, Dickhaus T, Müller KR. Introduction to machine learning for brain imaging. Neuroimage 56(2): 387-99. (2011)
[9]
Sayeed A, Petrou M, Spyrou N, Kadyrov A, Spinks T. Diagnostic features of Alzheimer’s disease extracted from PET sinograms. Phys Med Biol 47(1): 137. (2002)
[10]
Udomhunsakul S, Wongsit P. Feature extraction in medical MRI images. Cybernet Intell Syst 2004 IEEE Conf 1 340-4. (2004)
[11]
Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, Van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48(4): 441-6. (2012)
[12]
Wold S, Esbensen K, Geladi P. Principal component analysis. Chemom Intell Lab Syst 2(1): 37-52. (1987)
[13]
Chu C, Hsu AL, Chou KH, Bandettini P, Lin C. Alzheimer’s Disease Neuroimaging Initiative. Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. Neuroimage 60(1): 59-70. (2012)
[14]
Ayhan MS, Benton RG, Raghavan VV, Choubey S. Exploitation of 3D stereotactic surface projection for predictive modelling of Alzheimer’s disease. Int J Data Min Bioinform 7(2): 146-65. (2013)
[15]
Padilla P, López M, Górriz JM, Ramírez J, Salas-Gonzalez D. NMF-SVM based CAD tool applied to functional brain images for the diagnosis of Alzheimer’s disease. IEEE Trans Med Imaging 31(2): 207-16. (2012)
[16]
Ramírez J, Górriz JM, Salas-Gonzalez D, Romero A, López M, Álvarez I, et al. Computer-aided diagnosis of Alzheimer’s type dementia combining support vector machines and discriminant set of features. Inf Sci 237: 59-72. (2013)
[17]
Park H, Yang JJ, Seo J, Lee JM. Dimensionality reduced cortical features and their use in predicting longitudinal changes in Alzheimer’s disease. Neurosci Lett 550: 17-22. (2013)
[18]
Liu F, Wee CY, Chen H, Shen D. Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s Disease and mild cognitive impairment identification. Neuroimage 84: 466-75. (2014)
[19]
Ramírez J, Górriz JM, Segovia F, Chaves R, Salas-Gonzalez D, López M, et al. Computer aided diagnosis system for the Alzheimer’s disease based on partial least squares and random forest SPECT image classification. Neurosci Lett 472(2): 99-103. (2010)
[20]
Wold H. Estimation of principal components and related models by iterative least squares. In: Krishnaiaah PR, Ed. Multivariate Analysis New York: Academic Press. 391-420. (1966)
[21]
Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE, Eds. Statistical parametric mapping: the analysis of functional brain images: the analysis of functional brain images. USA Academic Press. (2011)
[22]
Segovia F, Bastin C, Salmon E, Górriz JM, Ramírez J, Phillips C. Combining pet images and neuropsychological test data for automatic diagnosis of Alzheimer’s disease. PLoS One 9(2)e88687 (2014)
[23]
Fravolini ML, Campa G. Design of a neural network adaptive controller via a constrained invariant ellipsoids technique. IEEE Trans Neural Netw 22(4): 627-38. (2011)
[24]
Dawson MRW, Dobbs A, Hooper HR, McEwan AJ, Triscott J, Cooney J. Artificial neural networks that use single-photon emission tomography to identify patients with probable Alzheimer’s disease. Eur J Nucl Med 21: 1303-11. (1994)
[25]
Beale MH, Hagan MT, Demuth HN. The MathWorks Inc., Neural Networks Toolbox Users’s Guide 2009. www.mathworks.com/ help/pdf_doc/nnet/nnet_ug.pdf
[26]
Page MPA, Howard RJ, O’Brien JT, Buxton-Thomas MS, Pickering AD. Use of Neural Networks in Brain SPECT to Diagnose Alzheimer’s Disease. J NucI Med 37: 195-200. (1996)
[27]
Hamilton D, O’Mahony D, Coffey J, Murphy J, O’Hare N, Freyne P, et al. Classification of mild Alzheimer’s disease by artificial neural network analysis of SPET data. Nucl Med Commun 18(9): 805-10. (1997)
[28]
Hamilton D, List A, Butler T, Hogg S, Cawley M. Discrimination between parkinsonian syndrome and essential tremor using artificial neural network classification of quantified DaTSCAN data. Nucl Med Commun 27(12): 939-44. (2006)
[29]
Palumbo B, Fravolini ML, Nuvoli S, Spanu A, Paulus KS, Schillaci O, et al. Comparison of two neural network classifiers in the differential diagnosis of Essential tremor and Parkinson’s disease by 123I-FP-CIT brain SPET. Eur J Nucl Med Mol Imaging 37: 2146-53. (2010)
[30]
Chang CC, Lin CJ. LIBSVM: A library for support vector machines. ACM Trans on Intelligent Systems and Technol 2(3): 27.(2001); Software available at. http://www.csie.ntu. edu.tw/~cjlin/libsvm
[31]
Cortes C, Vapnik V. Support-vector networks. Mach Learn 20(3): 273-97. (1995)
[32]
Hsu CW, Lin CJ. A comparison of methods for multiclass support vector machines. Neural Netw IEEE Transet 13(2): 415-25. (2002)
[33]
Pagani M, De Carli F, Morbelli S, Öberg J, Chincarini A, Frisoni GB, et al. Volume of interest-based [18 F] fluorodeoxyglucose PET discriminates MCI converting to Alzheimer’s disease from healthy controls. A European Alzheimer’s Disease Consortium (EADC) study. Neuroimage Clin 7: 34-42. (2015)
[34]
Salas-Gonzalez D, Górriz JM, Ramírez J, López M, Illan IA, Segovia F, et al. Analysis of SPECT brain images for the diagnosis of Alzheimer’s disease using moments and support vector machines. Neurosci Lett 461(1): 60-4. (2009)
[35]
Vandenberghe R, Nelissen N, Salmon E, Ivanoiu A, Hasselbalch S, Andersen A, et al. Binary classification of 18 F-flutemetamol PET using machine learning: Comparison with visual reads and structural MRI. Neuroimage 64: 517-25. (2013)
[36]
Palumbo B, Fravolini ML, Buresta T, Pompili F, Forini N, Nigro P, et al. Diagnostic accuracy of Parkinson disease by support vector machine (SVM) analysis of 123I-FP-CIT brain SPECT data: implications of putaminal findings and age. Medicine (Baltimore) 93(27)e228 (2014)
[37]
Loh WY. Classification and regression trees. Wiley Interdiscip Rev Data Min Knowl Discov 1(1): 14-23. (2011)
[38]
Salas-Gonzalez D, Górriz JM, Ramírez J, López M, Álvarez I, Segovia F, et al. Computer-aided diagnosis of Alzheimer’s disease using support vector machines and classification trees. Phys Med Biol 55(10): 2807. (2010)
[39]
Criminisi A, Shotton J, Konukoglu E. Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. The Netherlands: Now Publishers. (2012)
[40]
Friedman J, Hastie T, Tibshirani R. The elements of statistical learning Vol 1. Berlin Springer Series in Statistics. (2001)
[41]
Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and regression trees. USA CRC Press. (1984)
[42]
Breiman L. Random forests. Mach Learn 45(1): 5-32. (2001)
[43]
Gray KR, Aljabar P, Heckemann RA, Hammers A, Rueckert D. Alzheimer’s Disease Neuroimaging Initiative. Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease. Neuroimage 65: 167-75. (2013)

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy