Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

A novel machine learning method for cytokine-receptor interaction prediction

Author(s): Leyi Wei, Quan Zou, Minghong Liao, Huijuan Lu and Yuming Zhao

Volume 19, Issue 2, 2016

Page: [144 - 152] Pages: 9

DOI: 10.2174/1386207319666151110122621

Price: $65

Abstract

Most essential functions are associated with various protein–protein interactions, particularly the cytokine–receptor interaction. Knowledge of the heterogeneous network of cytokine– receptor interactions provides insights into various human physiological functions. However, only a few studies are focused on the computational prediction of these interactions. In this study, we propose a novel machine-learning-based method for predicting cytokine–receptor interactions. A protein sequence is first transformed by incorporating the sequence evolutional information and then formulated with the following three aspects: (1) the k-skip-n-gram model, (2) physicochemical properties, and (3) local pseudo position-specific score matrix (local PsePSSM). The random forest classifier is subsequently employed to predict potential cytokine–receptor interactions. Experimental results on a dataset of Homo sapiens show that the proposed method exhibits improved performance, with 3.4% higher overall prediction accuracy, than existing methods.

Keywords: Cytokine–receptor interaction prediction, feature extraction, random forest, sequence evolutional information.


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy