Abstract
Detection of biomarkers for neurodegenerative disorders (NDDs) within brain tissues of Alzheimer’s disease (AD) and Parkinson’s disease (PD) patients has always been hampered by our inability to access and biopsy tissue of key brain regions implicated in disease occurrence and progression. Currently, diagnosis of NDDs is principally based on clinical observations of symptoms that present at later stages of disease progression, followed by neuroimaging and, possibly, CSF evaluation. One way to potentially detect and diagnose NDDs at a far earlier stage is to screen for abnormal levels of specific disease markers within the peripheral circulation of patients with NDDs. Increasing evidence suggests that there is dysregulation of microRNAs (miRNAs) in NDDs. Peripheral blood mononuclear cells, as well as biofluids, such as plasma, serum, urine and cerebrospinal fluid, contain miRNAs that can be identified and quantified. Circulating miRNAs within blood and other biofluids may thus be characterized and used as non-invasive, diagnostic biomarkers that facilitate the early detection of disease and potentially the continual monitoring of disease progression for NDDs such as AD and PD. Plainly, such a screen is only possible with a clear understanding of which miRNAs change with disease, and when these changes occur during the progression of AD and PD. Such information is becoming increasingly available and, in the near future, may not only support disease diagnosis, but provide the opportunity to evaluate therapeutic interventions earlier in the disease process.
Keywords: Alzheimer’s disease, β-amyloid, α-synuclein, biofluids, diagnostic biomarkers, miRNAs, Parkinson’s disease.