Abstract
Background: Microalgae are a promising feedstock to produce biofuels such as biodiesel, since their culture does not compete with food crops. In order to make a microalgae biodiesel process cost effective, a biodiesel production process, which consists in separating the microalgae unsaponified lipids (such as carotenoids) from the biodiesel produced, has been tested.
Methods: In this process, the 1st step is an alkali reaction (saponification) between microalgae lipids and potassium hydroxide (KOH) (1.26 mmol OH-/g methanol), followed by a 2nd acid reaction step (esterification) using sulphuric acid (H2SO4) (1.65 mmol H+/g methanol) with a total methanol to lipid ratio of 13 mL/g. Between these 2 steps, a solvent extraction (hexane) separates the unsaponified lipids from the reaction mixture.
Results: This 2-step process resulted in a FAME yield of 91 g FAME/kg dry biomass, a biodiesel purity of 260 mmol FAME/100 g biodiesel and an unsaponified lipid yield of 170 g lipid/kg dry biomass. The 2-step process (with a hexane separation between both steps) tested in this study achieved a higher FAME yield and a higher biodiesel purity compared to a lipid crystallization separation. When crystallization with hexane at 0°C was tested at the same biodiesel production conditions as the 2-step process, a maximum FAME yield of 35 g FAME/kg dry biomass with a biodiesel purity of 52 mmol FAME/100 g biodiesel were obtained.
Conclusion: Despite the fact that this 2-step process produces an important amount of salt (4.8 kg K2SO4/kg FAME), for the best operating conditions tested, in comparison to a conventional vegetable oil-based biodiesel obtained by 1-step alkali homogeneous catalytic processes (0.03 kg K2SO4/kg FAME), it is effective and simple, and could help biodiesel from microalgae be cost effective.
Keywords: Biodiesel, crystallization, solvent extraction, lipids, microalgae, purification.
Graphical Abstract
Current Biotechnology
Title:Biodiesel Production and Unsaponified Lipids Extraction from Microalgae: an Experimental Study
Volume: 4 Issue: 4
Author(s): Marc Veillette, Anne Giroir-Fendler, Nathalie Faucheux and Michèle Heitz
Affiliation:
Keywords: Biodiesel, crystallization, solvent extraction, lipids, microalgae, purification.
Abstract: Background: Microalgae are a promising feedstock to produce biofuels such as biodiesel, since their culture does not compete with food crops. In order to make a microalgae biodiesel process cost effective, a biodiesel production process, which consists in separating the microalgae unsaponified lipids (such as carotenoids) from the biodiesel produced, has been tested.
Methods: In this process, the 1st step is an alkali reaction (saponification) between microalgae lipids and potassium hydroxide (KOH) (1.26 mmol OH-/g methanol), followed by a 2nd acid reaction step (esterification) using sulphuric acid (H2SO4) (1.65 mmol H+/g methanol) with a total methanol to lipid ratio of 13 mL/g. Between these 2 steps, a solvent extraction (hexane) separates the unsaponified lipids from the reaction mixture.
Results: This 2-step process resulted in a FAME yield of 91 g FAME/kg dry biomass, a biodiesel purity of 260 mmol FAME/100 g biodiesel and an unsaponified lipid yield of 170 g lipid/kg dry biomass. The 2-step process (with a hexane separation between both steps) tested in this study achieved a higher FAME yield and a higher biodiesel purity compared to a lipid crystallization separation. When crystallization with hexane at 0°C was tested at the same biodiesel production conditions as the 2-step process, a maximum FAME yield of 35 g FAME/kg dry biomass with a biodiesel purity of 52 mmol FAME/100 g biodiesel were obtained.
Conclusion: Despite the fact that this 2-step process produces an important amount of salt (4.8 kg K2SO4/kg FAME), for the best operating conditions tested, in comparison to a conventional vegetable oil-based biodiesel obtained by 1-step alkali homogeneous catalytic processes (0.03 kg K2SO4/kg FAME), it is effective and simple, and could help biodiesel from microalgae be cost effective.
Export Options
About this article
Cite this article as:
Veillette Marc, Giroir-Fendler Anne, Faucheux Nathalie and Heitz Michèle, Biodiesel Production and Unsaponified Lipids Extraction from Microalgae: an Experimental Study, Current Biotechnology 2015; 4 (4) . https://dx.doi.org/10.2174/2211550104666150827195035
DOI https://dx.doi.org/10.2174/2211550104666150827195035 |
Print ISSN 2211-5501 |
Publisher Name Bentham Science Publisher |
Online ISSN 2211-551X |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements