Abstract
Resveratrol (trans-3, 5, 4’-trihydroxystilbene) is a polyphenolic phytoalexin known to exhibit antioxidant and neuroprotective effects in several experimental models. Amyloid β peptide (Aβ), a core component of extracellular senile plaques accumulates in the brains of patients with Alzheimer’s disease and is related to the development of cognitive impairment and neuronal loss. The present study evaluates the neuroprotective action of resveratrol on Aβ-induced oxidative stress and memory loss. Cultured rat hippocampal H19-7 neuronal cell line was pretreated with 75 μM of resveratrol for 2 hrs followed by 25 μM of Aβ (1-40) for 24 hrs. H19-7 cells treated with Aβ exhibited increased lipid peroxide levels. Enzymatic antioxidants including superoxide dismutase, catalase, glutathione reductase, and non-enzymatic antioxidants such as tocopherol, ascorbic acid and glutathione were decreased in the Aβ treated group when compared to the control group. Aβ treatment also increased the expression of total tau as well as phosphorylated forms of tau (CP13, S202/205; PHF1, S396/404) and decreased the expression of insulin degrading enzyme (IDE), phosphoglycogen synthase kinase 3β involved in Aβ degradation and tau hyper phosphorylation. Expression of PSD-95 and Arc proteins, essential for synaptic maturity and plasticity, was decreased by Aβ treatment. Resveratrol treatment attenuated the accumulation of lipid peroxide levels, up-regulated the antioxidant activities and improved the expression of memory-associated proteins in Aβ treated H19-7 cells. These findings highlight the neuroprotective effect of resveratrol in preventing Aβ-induced oxidative damage and memory loss in vitro.
Keywords: Alzheimer’s disease, β-amyloid, insulin resistance, memory, oxidative stress, resveratrol, type 2 diabetes.