Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Ruthenium Complexes with Chiral Tetradentate PNNP Ligands in Asymmetric Catalytic Atom-Transfer Reactions

Author(s): Antonio Mezzetti and Cristina Bonaccorsi

Volume 10, Issue 2, 2006

Page: [225 - 240] Pages: 16

DOI: 10.2174/138527206775192951

Price: $65

Abstract

This account describes the application of ruthenium complexes containing chiral tetradentate ligands PNNP, featuring a P 2N2 ligand set as catalysts for enantioselective reactions involving atom-transfer between the metal complex and a non-coordinated molecule. The five-coordinate 16-electron [RuCl(PNNP)]+ species and their octahedral analogues [RuCl(L)(PNNP)]+ have been used in the asymmetric epoxidation and cyclopropanation of olefins, in which oxene or carbene are transferred from ruthenium to the noncoordinated substrate. The [RuCl(PNNP)]+ catalysts cyclopropanate styrenes and 1-octene in the presence of ethyl diazoacetate with excellent cis- and enantioselectivity. By means of anion optimization and electronic tuning of the PNNP ligand, we achieved the highly cis-selective cyclopropanation of 1-octene, which is, to the best of out knowledge, the first example for a terminal aliphatic olefin. A different mode of enantioselective atom transfer has been observed in the hydroxylation and electrophilic fluorination of 1,3-dicarbonyl compounds, in which the oxene or F+-transfer agent attacks a ruthenium-bound substrate. This mechanism is supported by stoichiometric reactions with the isolated enolato complexes formed upon reaction with activated ruthenium species obtained by double chloride abstraction from [RuCl2(PNNP)] with Et3OPF6. Nucleophilic fluorination of activated haloalkanes is also reported.

Keywords: Dicarbonyl Compounds, Olefin cyclopropanation, Asymmetric epoxidation, oxophilicity, thallium(I) salts


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy