Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Strategies for Functionalized Benzocycloheptene Amines Synthesis

Author(s): Abha Chaudhary and Pralay Das

Volume 19, Issue 2, 2015

Page: [179 - 196] Pages: 18

DOI: 10.2174/1385272819666140917214010

Price: $65

Abstract

Functionalized benzocycloheptenes are one of the most important classes of bicyclic framework that have been critically investigated in different areas of biological activities. Due to interesting skeleton and activities, synthetic chemists were inspired to synthesize them for better understanding of the basic knowledge associated with these compounds. Thus, this review aims to provide insight approaches for construction and functionalization of benzocycloheptene amines and renders useful details for further progress in the area of synthetic methodology. We believe that functionalized benzocycloheptene amine compounds and their various co-components, highlight the existence of numerous potential leads for the development of novel bioactive agents.

Keywords: Amino alcohol, amino ketone, benzocycloheptene amine, bicyclic amine, heterocyclic, oximino ketone.

Graphical Abstract

[1]
aLiu, Y.; Su, J.; Xiao, J.H.; Jiang, S.B.; Lu, H.; Zhong, W.; Wang, L.L.; Yang, X.H.; Li, S. Synthesis of benzocycloheptene derivatives as CCR5 antagonists with potent anti-HIV activity. Chin. Chem. Lett., 2008, 19, 428-430.
bAdam, W.; Balci, M.; Ceylan, Z.; Hinz, R.F. Reactions of benzocycloheptenes with dienophiles. Chem. Ber., 1991, 124, 383-386.
[2]
Basavaiah, D.; Aravindu, K.; Kumar, K.S.; Reddy, K.R. Simple, one-pot, and facile synthesis of angularly fused [6-7-5], [6-7-6], [6-7-7], and [6,7] ring systems using Baylis–Hillman acetates. Eur. J. Org. Chem., 2010, 10, 1843-1848.
[3]
Wyrwa, R.; Peters, O.; Bohlmann, R.; Droescher, P.; Prellle, K.; Fritzemeier, K.H.; Muhn, H.P. Benzocycloheptene derivatives as estrogens having selective activity. U.S. Patent 0,099,250 A1, April 16, 2009
[4]
GowriSankar. S.; Lee, K.Y.; Lee, C.G.; Kim, J.N. Synthesis of methyl 9-phenyl-7H-benzocycloheptene-6-carboxylates from Baylis-Hillman adducts: Use of intramolecular Friedel-Crafts alkenylation reaction. Tetrahedron Lett., 2004, 45, 6141-6146.
[5]
Shih, N.Y.; Mangiaracina, P.; Green, M.J.; Ganguly, A.K. Benzoalkanocompounds and their use for treating hyperproliferative diseases. U.S. Patent 5,446,069, August 29, 1995.
[6]
Chen, Z.; O’Donnell, C.J.; Maderna, A. Synthesis of 3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5Hbenzo[7]annulen-4-ol, a potent antineoplastic benzosuberene derivative for anti-cancer chemotherapy. Tetrahedron Lett., 2012, 53, 64-66.
[7]
Sriram, M.; Hall, J.J.; Grohmann, N.C.; Strecker, T.E.; Wootton, T.; Franken, A.; Trawick, M.L.; Pinney, K.G. Design, synthesis and biological evaluation of dihydronaphthalene and benzosuberene analogs of the combretastatins as inhibitors of tubulin polymerization in cancer chemotherapy. Bioorg. Med. Chem., 2008, 16, 8161-8171.
[8]
Huters, A.D.; Styduhar, E.D.; Garg, N.K. Total syntheses of the elusive welwitindolinones with bicyclo[4.3.1] cores. Angew. Chem. Int. Ed., 2012, 51, 3758-3765.
[9]
Feldman, K.S.; Ngernmeesri, P. Total synthesis of (±)-Dragmacidin E. Org. Lett., 2011, 13, 5704-5707.
[10]
Huntley, R.J.; Funk, R.L. A strategy for the total synthesis of Dragmacidin E. Construction of the core ring system. Org. Lett., 2006, 8, 4775-4778.
[11]
Graening, T.; Schmalz, H.G. Total syntheses of colchicine in comparison: A journey through 50 years of synthetic organic chemistry. Angew. Chem. Int. Ed., 2004, 43, 3230-3256.
[12]
Chosson, E.; Santoro, F.; Rochais, C.; Santos, J.S.O.; Legay, R.; Thoret, S.; Cresteil, T.; Sinicropi, M.S.; Besson, T.; Dallemagne, P. Synthesis of novel 7-oxo and 7-hydroxy trifluoroallocolchicinoids with cytotoxic effect. Bioorg. Med. Chem., 2012, 20, 2614-2623.
[13]
Hjelmencrantz, A.; Friberg, A.; Berg, U. Conformational analysis of some 5-substituted 5H-dibenzo[a,d]-cycloheptenes. J. Chem. Soc., Perkin Trans. 2, 2000, 7, 1293-1300.
[14]
Nakano, M.; Minoguchi, M.; Hanano, T.; Ono, S.I.; Horiuchi, H.; Teshima, K. Benzimidazole compound and pharmaceutical use thereof. U. S. Patent 0,120,841A1, May 13, 2010
[15]
Imanishi, M.; Itou, S.; Washizuka, K.; Hamashima, H.; Nakajima, Y.; Araki, T.; Tomishima, Y.; Sakurai, M.; Matsui, S.; Imamura, E.; Ueshima, K.; Yamamoto, T.; Yamamoto, N.; Ishikawa, H.; Nakano, K.; Unami, N.; Hamada, K.; Matsumura, Y.; Takamura, F.; Hattori, K. Discovery of a novel series of biphenyl benzoic acid derivatives as highly potent and selective human β3 adrenergic receptor agonists with good oral bioavailability. Part II. J. Med. Chem., 2008, 51, 4002-4020.
[16]
Tandon, V.K.; Singh, K.A.; Awasthi, A.K.; Khanna, J.M.; Lal, B.; Anand, N. Chemo- and stereoselective synthesis of benzocycloheptene and 1-benzoxepin derivatives as α-sympathomimetic and anorexigenic agents. Bioorg. Med. Chem. Lett., 2004, 14, 2867-2870.
[17]
Nedelec, L.; Pierdet, A.; Dumont, C.; Kanneengiesser, M.H. 7-Amino-6,7-dihydro[5H]benzocycloheptene derivatives. U. S. Patent 4,148,919, April 10, 1979
[18]
Baumgarth, M.; Lues, I.; Minck, K.O.; Beier, N. Piperidines and piperazines. U. S. Patent 5,495,022, February 27, 1996
[19]
Sorensen, U.S.; Teuber, L.; Peters, D.; Strobaek, D.; Johansen, T.H.; Nielsen, K.S.; Christophersen, P. 2-Aminobenzimidazole derivatives and their use as modulators of small-conductance calcium-activated potassium channels. European Patent 1,776,348 B1, May 28, 2008
[20]
Amsterdam, C.V. Use of defined substances that bind to the sigma receptor for combating sarcoma and carcinoma. WIPO 030,422 A1, April 18, 2002
[21]
Kato, K.; Terauchi, J.; Fukumoto, H.; Kakihana, M. Amine compounds, their production and use. U.S. Patent 7,256,204 B2, August 14, 2007
[22]
Strobel, H.; Wohlfart, P. Acylated 6,7,8,9-tetrahydro-5H-benzocycloheptenyl amines and their use as pharmaceutical agents. U.S. Patent 7,709,478 B2, May 4, 2010.
[23]
Chow, K.; Fang, W.K.; Corpuz, E.G.; Gil, D.W.; Garst, M.E. Substituted fluoroethyl ureas as alpha 2 adrenergic agents. U.S. Patent 7,598,417 B2, October 6, 2009
[24]
Zaratin, P.F.; Petrone, G.; Sbacchi, M.; Garnier, M.; Fossati, C.; Petrillo, P.; Ronzoni, S.; Giardina, G.A.M.; Scheideler, M.A. Modification of nociception and morphine tolerance by the selective opiate receptor-like orphan receptor antagonist (-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro5H-benzocyclohepten-5-ol (SB-612111). J. Pharmacol. Exp. Ther., 2004, 308, 454-461.
[25]
Nguyen, T.V.; Hartmann, J.M.; Enders, D. Recent synthetic strategies to access seven-membered carbocycles in natural product synthesis. Synthesis, 2013, 45, 845-873.
[26]
Battiste, M.A.; Pelphrey, P.M.; Wright, D.L. The cycloaddition strategy for the synthesis of natural products containing carbocyclic seven-membered rings. Chem. Eur. J., 2006, 12, 3438-3447.
[27]
Azizi, N.; Saidi, M.R. Highly chemoselective addition of amines to epoxides in water. Org. Lett., 2005, 7, 3649-3651.
[28]
Lait, S.M.; Rankic, D.A.; Keay, B.A. 1,3-Aminoalcohols and their derivatives in asymmetric organic synthesis. Chem. Rev., 2007, 107, 767-796.
[29]
Li, G.; Chang, H.T.; Sharpless, K.B. Catalytic asymmetric aminohydroxylation (AA) of olefins. Angew. Chem. Int. Ed. Engl., 1996, 35, 451-454.
[30]
Karjalainen, O.K.; Koskinen, A.M. Diastereoselective synthesis of vicinal amino alcohols. Org. Biomol. Chem., 2012, 10, 4311-4326.
[31]
Galantay, E.E.; Morristown, N.J. 6-Amino-6,7,8,9-tetrahydro-5Hbenzocyclohepten- 5-ols. U.S. Patent 3,458,577, July 29, 1969
[32]
Lal, B.; Khanna, J.M.; Anand, N. Phenethylamine in a rigid framework. 2,3-substituted cis- and trans-6-amino-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ols. J. Med. Chem., 1972, 15, 23-27.
[33]
Wong, S.C.; Sasso, S.; Jones, H.; Kaminski, J.J. Stereochemical considerations and the antiinflammatory activity of 6-amino-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol and related derivatives. J. Med. Chem., 1984, 27, 20-27.
[34]
Mina-Osorio, P. The moonlighting enzyme CD13: Old and new functions to target. Trends Mol. Med., 2008, 14, 361-371.
[35]
Bhagwat, S.V.; Petrovic, N.; Okamoto, Y.; Shapiro, L.H. The angiogenic regulator CD13/APN is a transcriptional target of Ras signaling pathways in endothelial morphogenesis. Blood, 2003, 101, 1818-1826.
[36]
Aozuka, H.Y.; Koisumi, K.; Saitoh, Y.; Ueda, Y.; Sakurai, H.; Saiki, I. Anti-tumor angiogenesis effect of aminopeptidase inhibitor bestatin against B16-BL6 melanoma cells orthotopically implanted into syngeneic mice. Cancer Lett., 2004, 2216, 35-42.
[37]
Albrecht, S.; Al-Lakkis-Wehbe, M.; Orsini, A.; Defoin, A.; Pale, P.; Salomon, E.; Tarnus, C.; Weibel, J.M. Amino-benzosuberone: A novel warhead for selective inhibition of human aminopeptidase-N/CD13. Bioorg. Med. Chem., 2011, 19, 1434-1449.
[38]
Maiereanu, C.; Schmitt, C.; Schifano-Faux, N.; Le Nouën, D.; Defoin, A.; Tarnus, C. A novel amino-benzosuberone derivative is a picomolar inhibitor of mammalian aminopeptidase N/CD13. Bioorg. Med. Chem., 2011, 19, 5716-5733.
[39]
Al-Lakkis-Wehbe, M.; Roux, L.; Charrier, C.; Alavi, S.; Le Nouen, D.; Defoin, A.; Tarnus, C.; Albrecht, S. Regioselective synthesis of the 1-bromo-4-phenyl-tetrahydro-7-aminobenzocyclohepten-6-one, a subnanomolar aminopeptidase-N/CD13 inhibitor. Tetrahedron, 2012, 68, 6447-6455.
[40]
Tarbell, D.S.; Bill, J.C. The properties of 4,5-benztropolone and related compounds, as compared to those of colchicine and other tropolone. J. Am. Chem. Soc., 1952, 74, 1234-1238.
[41]
Khanna, J.M.; Chak, I.M.; Anand, N. Agents acting on the central nervous system: Part VIII-5-substituted-6,7,8,9-tetrahydro-5H-benzocyc1oheptenes. Indian J. Chem., 1967, 5, 347-352.
[42]
Cannon, J.G.; Perez, J.A.; Pease, J.P. Comparison of biological effects of n-alkylated congeners of p-phenethylamine derived from 2-aminotetralin, 2-aminoindan, and 6-aminobenzocycloheptene. J. Med. Chem., 1980, 23, 745-749.
[43]
Vejdelek, Z.; Dlabak, A.; Protiva, M. 6-Amino-6,7,8,9-tetrahydro-5H-benzocycloheptene and derivatives. Collect. Czech. Chem. Commun., 1974, 39, 2819-2827.
[44]
Cannon, J.G.; Pease, J.P.; Hamer, R.L.; Ilhan, M.; Bhatnagar, R.K.; Long, J.P. Resorcinol congeners of dopamine derived from benzocycloheptene and indan. J. Med. Chem., 1984, 27, 186-189.
[45]
Cannon, J.G.; Pease, J.P.; Long, J.P.; Flynnf, J. Catechol derivatives of 6-aminobenzocycloheptene: Assessment of dopaminergic effects. J. Med. Chem., 1984, 27, 922-923.
[46]
Liu, Y.; Mellin, C.; Bjork, L.; Svensson, B.; Csoregh, I.; Helander, A.; Kenne, L.; Anden, N.E.; Hacksell, U. (R)- and (S)-5,6,7,8-Tetrahydro-l-hydroxy-N,N-dipropyl-9H-benzocyclohepten-8-ylamine. Stereoselective interactions with 5-HTlA receptors in the brain. J. Med. Chem., 1989, 32, 2311-2318.
[47]
Gingrich, D.E.; Lisko, J.G.; Curry, M.A.; Cheng, M.; Quail, M.; Lu, L.; Wan, W.; Albom, M.S.; Angeles, T.S.; Aimone, L.D.; Haltiwanger, R.C.; Wells-Knecht, K.; Ott, G.R.; Ghose, A.K.; Ator, M.A.; Ruggeri, B.; Dorsey, B.D. Discovery of an orally efficacious inhibitor of anaplastic lymphoma kinase. J. Med. Chem., 2012, 55, 4580-4593.
[48]
Core, E.J.; Zhang, F. re- and si-Face-selective nitroaldol reactions catalyzed by a rigid chiral quaternary ammonium salt: A highly stereoselective synthesis of the HIV protease inhibitor Amprenavir (Vertex 478). Angew. Chem. Int. Ed., 1999, 38, 1931-1934.
[49]
Jacques, J.; Collet, A.; Wilen, S.H. Enantiomers, Racemates and Resolutions; John Wiley: Chichester, 1981.
[50]
Ager, D.J.; Prakash, I.; Schaad, D.R. 1,2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis. Chem. Rev., 1996, 96, 835-876.
[51]
(a) Fontana, L.P.; Chandramouly, T.; Smith, H.E.; Polavarupu, P.L. Vibrational circular dichroism and absolute configuration of 1-substituted indans. J. Org. Chem., 1988, 53, 3379-3381.
(b) Smith, H.E.; Willis, T.C. Optically active amines-X: Optical rotatory dispersion and circular dichroism of the N-salicylidene derivatives of α- and β-phenylalkylamines-the absolute configurations of some phenylnorbornanes. Tetrahedron, 1970, 26, 107-118.
(c)Lawson, W.B.; Rao, G.J.S. Specificity in the alkylation of methionine at the active site of α-chymotrypsin by aromatic α-bromo amides. Biochemistry, 1980, 19, 2133-2139.
(d)Smith, R.; White, R.L.; Krantz, A. Stereoisomers of allenic amines as inactivators of monoamine oxidase type B. Stereochemical probes of the active site. J. Med. Chem., 1988, 31, 1558-1566.
[52]
(a) Dobashi, A.; Dobashi, Y.; Kinoshita, K.; Hara, S. Extended scope of enantiomer resolution with chiral diamide phases in liquid chromatography. Anal. Chem., 1988, 60, 1985-1987.
(b) Stalcup, A.M.; Gahm, K.H. A sulfated cyclodextrin chiral stationary phase for high-performance liquid chromatography. Anal. Chem., 1996, 68, 1369-1374.
(c) Shitangkoon, A.; Vigh, G. Gas chromatographic enantiomer separations using derivatized corn syrup polysaccharides as stationary phases. J. High Resolut. Chromatogr., 1993, 16, 504-505.
[53]
Hattori, K.; Nagano, M.; Kato, T.; Nakanishi, I.; Imai, K.; Kinoshita, T.; Sakane, K. Asymmetric Synthesis of FR165914: A novel β3-adrenergic agonist with a benzocycloheptene structure. Bioorg. Med. Chem. Lett., 1995, 5, 2821-2824.
[54]
Gutman, A.L.; Etinger, M.; Nisnevich, G.; Polyak, F. Stereo- and regioselectivity in asymmetric synthesis of α-amino substituted benzocyclic compounds. Tetrahedron Asymmetry, 1998, 9, 4369-4379.
[55]
Imanishi, M.; Nakajima, Y.; Tomishima, Y.; Hamashima, H.; Washizuka, K.; Sakurai, M.; Matsui, S.; Imamura, E.; Ueshima, K.; Yamamoto, T.; Yamamoto, N.; Ishikawa, H.; Nakano, K.; Unami, N.; Hamada, K.; Matsumura, Y.; Takamura, F.; Hattori, K. Discovery of a novel series of benzoic acid derivatives as potent and selective human β3 adrenergic receptor agonists with good oral bioavailability. 3. Phenylethanolaminotetraline, (PEAT) skeleton containing biphenyl or biphenyl ether moiety. J. Med. Chem., 2008, 51, 4804-4822.
[56]
(a)Shiokawa, Y.; Nagano, M.; Taniguchi, K.; Take, K.; Kato, T.; Tsubaki, K. (Ethanolamino)benzocycloalkane derivatives having sympathomimetic and anti-pollakiuria activities. WO 9,315,041, August 5, 1993
(b) Nishiwaki, M.; Ieda, S.; Ishibashi, N.; Okawa, K. Preparation of optically active benzocycloheptenes as β3 adrenoceptor agonists. Japan Patent 2004,149,477, May 27, 2004.
[57]
Kotha, S.; Sreenivasachary, N.; Brahmachary, E. Synthesis of benzocycloheptene-based amino acid derivatives via a [4 + 2] cycloaddition reaction as a key step. Tetrahedron, 2001, 57, 6261-6265.
[58]
(a) Trigalo, F.; Buisson, D.; Azerad, R. Chemoenzymatic synthesis of conformationally rigid glutamic acid analogues. Tetrahedron Lett., 1988, 29, 6109-6112.
(b) Bhandari, A.; Jones, D.G.; Schulleck, J.R.; Vo, K.; Schunk, C.A.; Tamanaha, L.L.; Chen, D.; Yuan, Z.; Needels, M.C.; Gallop, M.A. Exploring structure-activity relationships around the phosphomannose isomerase inhibitor AF14049 via combinatorial synthesis. Bioorg. Med. Chem. Lett., 1998, 8, 2303-2308.
[59]
Srikrishna, A.; Nagaraju, S.; Kondaiah, P. Application of microwave heating technique for rapid synthesis of γ,δ-unsaturated esters. Tetrahedron, 1995, 51, 1809-1816.
[60]
Corey, E.J.; Kirst, H.A.; Katzenellenbogen, J.A. A stereospecific total synthesis of α-Santalol. J. Am. Chem. Soc., 1970, 92, 6314-6320.
[61]
(a) Kabalka, G.W.; Varma, M.; Varma, R.S. The tosylation of alcohols. J. Org. Chem., 1986, 51, 2386-2388.
(b) Szeja, W.S. Synthesis of sulfonic esters under phase-transfer catalysed conditions. Synthesis, 1979, 10, 822-823.
[62]
Tanpure, R.P.; George, C.; Sriram, M.; Strecker, T.E.; Tidmore, J.K.; Hamel, E.; Charlton-Sevcik, A.K.; Chaplin, D.J.; Trawick, M.L.; Pinney, K.G. An amino-benzosuberene analogue that inhibits tubulin assembly and demonstrates remarkable cytotoxicity. MedChemComm, 2012, 3, 720-724.
[63]
(a) Sriram, M.; Hall, J.J.; Grohmann, N.C.; Strecker, T.E.; Wootton, T.; Franken, A.; Trawick, M.L.; Pinney, K.G. Design, synthesis and biological evaluation of dihydronaphthalene and benzosuberene analogs of the combretastatins as inhibitors of tubulin polymerization in cancer chemotherapy. Bioorg. Med. Chem., 2008, 16, 8161-8171.
(b) McMurry, J.E.; Coppolino, A.P. Cyanogen azide ring-expansion reaction. J. Org. Chem., 1973, 38, 2821-2827.
(c) Miller, R.B.; Gutierrez, C.G. Synthesis of 9,9-dimethyl-2-methoxy-5-benzosuberone. An unexpected failure of benzylic oxidation. J. Org. Chem., 1978, 43, 1569-1573.
[64]
Wyrick, S.D.; Booth, R.G.; Myers, A.M.; Owens, C.E.; Bucholtz, E.C.; Hooper, P.C.; Kula, N.S.; Baldessarini, R.J.; Mailman, R.B. 1-Phenyl-3-amino-l,2,3,4-tetrahydronaphthalenes and related derivatives as ligands for the neuromodulatory σ3 receptor: Further structure-activity relationships. J. Med. Chem., 1995, 38, 3857-3864.
[65]
Farhanullah; Tripathi, B.K.; Srivastava, A.K.; Rama, V.J. Synthesis of bicyclic biaryls as glucose-6-phosphatase inhibitors. Bioorg. Med. Chem., 2004, 12, 1543-1549.
[66]
Heydenreich, M.; Wolf, G.; Woller, J.; Kleinpeter, E. Restricted rotation of the amino group and ring inversion in highly substituted anilines. A dynamic NMR and computational study. Tetrahedron, 2004, 60, 4663-4670.
[67]
Shiraishi, M.; Aramaki, Y.; Seto, M.; Imoto, H.; Nishikawa, Y.; Kanzaki, N.; Okamoto, M.; Sawada, H.; Nishimura, O.; Baba, M.; Fujino, M. Discovery of novel, potent, and selective small-molecule CCR5 antagonists as anti-HIV-1 agents: Synthesis and biological evaluation of anilide derivatives with a quaternary ammonium moiety. J. Med. Chem., 2000, 43, 2049-2063.
[68]
Baba, M.; Nishimura, O.; Kanzaki, N.; Okamoto, M.; Sawada, H.; Iizawa, Y.; Shiraishi, M.; Aramaki, Y.; Okonogi, K.; Ogawa, Y.; Meguro, K.; Fujino, M. A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc. Natl. Acad. Sci. USA, 1999, 96, 5698-5703.
[69]
Aramaki, Y.; Seto, M.; Okawa, T.; Oda, T.; Kanzaki, N.; Shiraishi, M. Synthesis of 1-benzothiepine and 1-benzazepine derivatives as orally active CCR5 antagonists. Chem. Pharm. Bull., 2004, 52, 254-258.
[70]
Konno, H.; Aimoto, S.; Smith, S.O.; Nosaka, K.; Akaji, K. Synthesis of [19, 35, 36-13C3]-labeled TAK779 as a molecular probe. Bioorg. Med. Chem., 2009, 17, 5769-5774.
[71]
Perron-Sierra, F.; Dizier, D.S.; Bertrand, M.; Genton, A.; Tuckera, G.C.; Casaraa, P. Substituted benzocyloheptenes as potent and selective αv integrin antagonists. Bioorg. Med. Chem. Lett., 2002, 12, 3291-3296.
[72]
Otera, J.; Fujita, Y.; Fukuzumi, S.; Hirai, K.I.; Gu, J.H.; Nakai, T. Diastereocontrol in Lewis acid-catalyzed Michael reactions of 4-siloxycyclopentenone with ketene silyl acetals: Stereoelectronic vs. steric effect. Tetrahedron Lett., 1995, 36, 95-98.
[73]
Burford, C.; Cooke, F.; Ehlinger, E.; Magnus, P. α-Chloro-α-trimethylsilyl carbanion, a reagent for homologation of ketones and aldehydes via α,β-epoxysilanes. J. Am. Chem. Soc., 1977, 99, 4536-4537.
[74]
(a) Abdel-Magid, A.F.; Carson, K.G.; Harris, B.D.; Maryanoff, C.A.; Shah, R.D. Reductive amination of aldehydes and ketones with sodium triacetoxyborohydride. Studies on direct and indirect reductive amination procedures. J. Org. Chem., 1996, 61, 3849-3862.
(b) Waddell, T.G.; Rambalakos, T.; Christie, K.R. An example of regioselective esterification by intramolecular acyl transfer from a tertiary amine. J. Org. Chem., 1990, 55, 4765-4767.
(c) Misun, M.; Pfaltz, A. Enantioselective reduction of electrophilic C=C bonds with sodium tetrahydroborate and ‘semicorrin’ cobalt catalysts. Helv. Chim. Acta, 1996, 79, 961-972.
(d) Abbenante, G.; Prager, R.H. Potential GABAB receptor antagonists. V. The application of radical additions to styrenes to produce 2-hydroxysaclofen. Aust. J. Chem., 1992, 45, 1791-1800.
[75]
Fukatsu, K.; Uchikawa, O.; Kawada, M.; Yamano, T.; Yamashita, M.; Kato, K.; Hirai, K.; Hinuma, S.; Miyamoto, M.; Ohkawa, S. Synthesis of a novel series of benzocycloalkene derivatives as melatonin receptor agonists. J. Med. Chem., 2002, 45, 4212-4221.
[76]
Itani, H.; Ito, H.; Sakata, Y.; Hatakeyama, Y.; Oohashi, H.; Satoh, Y. Novel potent antagonists of human neuropeptide Y Y5 receptors. Part 2: Substituted benzo[a]cycloheptene derivatives. Bioorg. Med. Chem. Lett., 2002, 12, 757-761.
[77]
Chaudhary, A.; Kaur, P.; Singh, B.; Pathania, V. Chemical composition of hydrodistilled and solvent volatiles extracted from woodchips of Himalayan Cedrus: Cedrus deodara (Roxb.) Loud. Nat. Prod. Commun., 2009, 4, 1257-1260.
[78]
Chaudhary, A.; Das, P.; Mishra, A.; Kaur, P.; Singh, B.; Goel, R.K. Naturally occurring himachalenes to benzocycloheptene amino vinyl bromide derivatives: As antidepressant molecules. Mol. Divers., 2012, 16, 357-366.
[79]
Lowe, J.A., III; Qian, W.; Drozda, S.E.; Volkmann, R.A.; Nason, D.; Nelson, R.B.; Nolan, C.; Liston, D.; Ward, K.; Faraci, S.; Verdries, K.; Seymour, P.; Majchrzak, M.; Villalobos, A.; White, W.F. Structure-activity relationships of potent, selective inhibitors of neuronal nitric oxide synthase based on the 6-phenyl-2-aminopyridine structure. J. Med. Chem., 2004, 47, 1575-1586.
[80]
Lynch, K.R.; Macdonald, T.L. Benzocycloheptyl analogs having sphingosine 1-phosphate receptor activity. U.S. Patent 7,915,315 B2, March 29, 2011.
[81]
Melloni, P.; Torre, A.D.; Meroni, M.; Ambrosini, A.; Rossi, A.C. Azetidine derivatives of tricyclic antidepressant agents. J. Med. Chem., 1979, 22, 183-191.
[82]
Jimnez, A.; Vega, S. Derivatives of benzo[4,5]cyclohepta[1,2-b]thiophene. 4. synthesis of 1-(9,10-dihydro-4H-benzo[4,5]cyclohepta[1,2-b]thiophen-4-yl)-3-alkylaminoazetidines. J. Heterocycl. Chem., 1986, 23, 1503-1506.
[83]
Satoh, Y.; Hatori, C.; Ito, H. Novel potent antagonists of human neuropeptide Y-Y5 receptor. Part 4: Tetrahydrodiazabenzazulene derivatives. Bioorg. Med. Chem. Lett., 2002, 12, 1009-1011.
[84]
Galantay, E.; Simpson, W.R.J. Novel synthesis of benzotropolones. J. Chem. Soc. D, 1970, 12, 754-755.
[85]
Pietra, F. Seven-membered conjugated carbo- and heterocyclic compounds and their homoconjugated analogs and metal complexes. Synthesis, biosynthesis, structure, and reactivity. Chem. Rev., 1973, 73, 293-364.
[86]
Smith, P.A.; Berry, W.L.J. Some exploratory syntheses of benzosuberans and tetrahydrobenzazepinones and some related diazoöxides. Org. Chem., 1961, 26, 27-36.
[87]
Amr, A.G.E.; Mohamed, A.M.; Mohamed, S.F.; Abdel-Hafez, N.A.; Hammam, A.E.F.G. Anticancer activities of some newly synthesized pyridine, pyrane, and pyrimidine derivatives. Bioorg. Med. Chem., 2006, 14, 5481-5488.
[88]
Ali, M.I.; Hammam, A.E.F.G. Chemistry of seven-membered heterocycles. 4. Synthesis and reactions of 8-aryl-6,7,10,11-tetrahydro-5H, 8H-benzo[3.4]cyclohepteno[2,l-d]-thiazol0[3,2-a]pyrimidin-10-ones. J. Chem. Eng. Data, 1978, 23, 91-93.
[89]
Kuznetsov, A.; Makarov, A.; Rubtsov, A.E.; Butin, A.V.; Gevorgyan, V. Brönsted acid-catalyzed one-pot synthesis of indoles from o-aminobenzyl alcohols and furans. J. Org. Chem., 2013, 78, 12144-12153.
[90]
Chen, Z.; Yan, Q.; Liu, Z.; Xu, Y.; Zhang, Y. Copper-mediated synthesis of 1,2,3-triazoles from N-tosylhydrazones and anilines. Angew. Chem. Int. Ed., 2013, 52, 13324-13328.
[91]
Cosentino, L.; Redondo-Horcajo, M.; Zhao, Y.; Santos, A.R.; Chowdury, K.F.; Vinader, V.; Abdallah, Q.M.; Abdel-Rahman, H.; Fournier-Dit-Chabert, J.; Shnyder, S.D.; Loadman, P.M.; Fang, W.S.; Díaz, J.F.; Barasoain, I.; Burns, P.A.; Pors, K. Synthesis and biological evaluation of colchicine B-ring analogues tethered with halogenated benzyl moieties. J. Med. Chem., 2012, 55, 11062-11066.
[92]
Graening, T.; Schmalz, H.G. Total syntheses of colchicine in comparison: A journey through 50 years of syntetic organic chemistry. Angew. Chem. Int. Ed., 2004, 43, 3230-3256.
[93]
Banwell, M.G.; Lambert, J.N.; Mackay, M.F.; Greenwood, R.J. A biomimetic and fully regiocontrolled total synthesis of (±)-colchicine. J. Chem. Soc. Chem. Commun., 1992, 14, 974-975.
[94]
Evans, D.A.; Tanis, S.P.; Hart, D.J. Convergent total synthesis of (±)-colchicine and (±)-desacetamidoisocolchicine. J. Am. Chem. Soc., 1981, 103, 5813-5821.
[95]
Wenkert, E.; Kim, H.S. Studies in Natural Products Chemistry; Atta-ur- Rahman, Ed.; Elsevier: Amsterdam, 1989; Vol. 3, Part B, pp. 287.
[96]
Boyer, F.D.; Hanna, I. Synthesis of the tricyclic core of colchicine via a dienyne tandem ring-closing metathesis reaction. Org. Lett., 2007, 9, 2293-2295.
[97]
Nakamura, T. Studies on the total synthesis of dl-colchiceine. III. Chem. Pharm. Bull., 1962, 10, 291-299.
[98]
Nakamura, T.; Murase, Y.; Endo, Y.; Hayashi, R. Studies on the total synthesis of dl-colchiceine. I. Synthesis of 3-hydroxy-9,10,11-trimethoxy-1,2,3,4,6,7-hexahydro-5H-dibenzo [a,c] cycloheptatrien-5-one. Chem. Pharm. Bull., 1962, 10, 281-290.
[99]
Boyer, F.D.; Hanna, I. Synthesis of new allocolchicinoids with seven- and eight-membered B-rings by enyne ring-closing metathesis. Eur. J. Org. Chem., 2008, 2008, 4938-4948.
[100]
Scholl, M.; Ding, S.; Lee, C.W.; Grubbs, R.H. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org. Lett., 1999, 1, 953-956.
[101]
Dauben, W.G.; Michno, D.M. Direct oxidation of tertiary allylic alcohols. A simple and effective method for alkylative carbonyl transposition. J. Org. Chem., 1977, 42, 682-685.
[102]
Capon, R.J.; Rooney, F.; Murray, L.M.; Collins, E.; Sim, A.T.R.; Rostas, J.A.P.; Butler, M.S.; Carrol, A.R. Dragmacidins: New protein phosphatase inhibitors from a southern Australian deep-water marine sponge. Spongosorites sp. J. Nat. Prod., 1998, 61, 660-662.
[103]
Huters, A.D.; Styduhar, E.D.; Garg, N.K. Total syntheses of the elusive welwitindolinones with bicyclo[4.3.1] cores. Angew. Chem. Int. Ed., 2012, 51, 3758-3765.
[104]
Bhat, V.; Allan, K.M.; Rawal, V.H. Total synthesis of N-methylwelwitindolinone D isonitrile. J. Am. Chem. Soc., 2011, 133, 5798-5801.
[105]
Allan, K.M.; Kobayashi, K.; Rawal, V.H. A unified route to the welwitindolinone alkaloids: Total synthesis of (-)-N-methylwelwitindolinone C isothiocyanate, (-)N-methylwelwitindolinone C isonitrile, and (-)-3-hydroxy-N-methylwelwitindolinone C isothiocyanate. J. Am. Chem. Soc., 2012, 134, 1392-1395.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy