Abstract
In this investigation, a cost effective approach has been developed to fabricate photoelectrochemical (PEC) solar cell on cheap steel substrate sensitized with natural dye and performance has been compared with CdS quantum dots (QDs) sensitized PEC cell. The performance of natural dye sensitized PEC cells has been found to be better than QDs senstitized cell and comparable to conventional high cost ITO-FTO based solar cell which makes use of costly synthetic dyes. For the purpose, microwave synthesis of TiO2 and electrophoretic deposition(EPD) of porous, high qualityTiO2 thin films on steel substrate using microwave synthesized nanocrystaline TiO2 has been carried out. The prepared TiO2 thin films were sensitized using natural dyes and QDs of CdS for PEC cell application. Effect of different sensitizers on TiO2 photoanodes was studied using 1M KOH electrolyte in a PEC cell using electrochemical impedance spectroscopy (EIS). Conversion of visible light into electricity has been accomplished using these cells with natural sensitizer providing short circuit current density (Jsc) and open circuit voltage (Voc) values comparable to conventional high cost traditional dyes. The maximum Jsc and Voc are found to be 450.40µAcm−2 and 242.43 mV, respectively, under 10mWcm−2 of illumination for natural dye.
Keywords: Electrophoretic deposition, Electrochemical Impedance Spectroscopy, Natural dye, Photoanode, Photoelectrochemical Cell, Quantum Dots, Steel Substrate, TiO2.