Abstract
Therapeutics designed to increase synaptic neurotransmitter levels by inhibiting neurotransmitter sodium symporters (NSSs) classify a strategic approach to treat brain disorders such as depression or epilepsy, however, the critical elementary steps that couple downhill flux of sodium to uphill transport of neurotransmitter are not distinguished as yet. Here we present modelling of NSS member neuronal GAT1 with the substrate γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter. GABA binding is simulated with the occluded conformation of GAT1 homodimer in an explicit lipid/water environment. Simulations performed in the 1-10 ns range of time elucidated persistent formation of halfextended minor and H-bridged major GABA conformations, referred to as binding and traverse conformations, respectively. The traverse GABA conformation was further stabilized by GAT1-bound Na+(1). We also observed Na+(1) translocation to GAT1-bound Cl- as well as the appearance of water molecules at GABA and GAT1-bound Na+(2), conjecturing causality. Scaling dynamics suggest that the traverse GABA conformation may be valid for developing substrate inhibitors with high efficacy. The potential for this finding is significant with impact not only in pharmacology but wherever understanding of the mechanism of neurotransmitter uptake is valuable.
Keywords: Binding and traverse conformation, neurotransmitter sodium symporter family, neuronal GABA symporter subtype, sodium symport.
Current Drug Discovery Technologies
Title:Sodium-Assisted Formation of Binding and Traverse Conformations of the Substrate in a Neurotransmitter Sodium Symporter Model
Volume: 11 Issue: 3
Author(s): Agnes Simon, Akos Bencsura, Laszlo Heja, Csaba Magyar and Julianna Kardos
Affiliation:
Keywords: Binding and traverse conformation, neurotransmitter sodium symporter family, neuronal GABA symporter subtype, sodium symport.
Abstract: Therapeutics designed to increase synaptic neurotransmitter levels by inhibiting neurotransmitter sodium symporters (NSSs) classify a strategic approach to treat brain disorders such as depression or epilepsy, however, the critical elementary steps that couple downhill flux of sodium to uphill transport of neurotransmitter are not distinguished as yet. Here we present modelling of NSS member neuronal GAT1 with the substrate γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter. GABA binding is simulated with the occluded conformation of GAT1 homodimer in an explicit lipid/water environment. Simulations performed in the 1-10 ns range of time elucidated persistent formation of halfextended minor and H-bridged major GABA conformations, referred to as binding and traverse conformations, respectively. The traverse GABA conformation was further stabilized by GAT1-bound Na+(1). We also observed Na+(1) translocation to GAT1-bound Cl- as well as the appearance of water molecules at GABA and GAT1-bound Na+(2), conjecturing causality. Scaling dynamics suggest that the traverse GABA conformation may be valid for developing substrate inhibitors with high efficacy. The potential for this finding is significant with impact not only in pharmacology but wherever understanding of the mechanism of neurotransmitter uptake is valuable.
Export Options
About this article
Cite this article as:
Simon Agnes, Bencsura Akos, Heja Laszlo, Magyar Csaba and Kardos Julianna, Sodium-Assisted Formation of Binding and Traverse Conformations of the Substrate in a Neurotransmitter Sodium Symporter Model, Current Drug Discovery Technologies 2014; 11 (3) . https://dx.doi.org/10.2174/1570163811666140812110735
DOI https://dx.doi.org/10.2174/1570163811666140812110735 |
Print ISSN 1570-1638 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-6220 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Editorial [Hot Topic: Recent Developments in the Drug Discovery of Epilepsy (Guest Editor: Waquar Ahsan)]
Current Topics in Medicinal Chemistry Gene Therapy for Ischemic Brain Diseases
Current Gene Therapy Statins, Mevalonate Pathway and its Intermediate Products in Placental Development and Preeclampsia
Current Molecular Pharmacology Cell-based Treatment of Cerebral Palsy: Still a Long Way Ahead
Current Stem Cell Research & Therapy Adenosine A1 Receptors in the Central Nervous System: Their Functions in Health and Disease, and Possible Elucidation by PET Imaging
Current Medicinal Chemistry Decreased Plasma Level of Lipoprotein Lipase Predicted Verbal Disfluency in Chinese Type 2 Diabetes Mellitus Patients with Early Cognitive Deficits
Current Alzheimer Research A2A Adenosine Receptor and its Modulators: Overview on a Druggable GPCR and on Structure-Activity Relationship Analysis and Binding Requirements of Agonists and Antagonists
Current Pharmaceutical Design Therapeutic Efficacy of Selegiline in Neurodegenerative Disorders and Neurological Diseases
Current Drug Targets Computational Methods in Determination of Pharmacophore Models of 5-HT<sub>1A</sub>, 5-HT<sub>2A</sub> and 5-HT<sub>7</sub> Receptors
Mini-Reviews in Medicinal Chemistry The Enigmatic Drug Binding Site for Sodium Channel Inhibitors
Current Molecular Pharmacology Antiepileptics for Post-Traumatic Seizure Prophylaxis after Traumatic Brain Injury
Current Pharmaceutical Design Integration of Pharmacogenomics and Pharmacometrics to Support Drug Development, Regulatory and Therapeutic Decisions
Current Pharmacogenomics and Personalized Medicine Current Concepts on Selected Plant Secondary Metabolites With Promising Inhibitory Effects Against Enzymes Linked to Alzheimer’s Disease
Current Medicinal Chemistry The Role of Therapeutic Drugs on Acquired Mitochondrial Toxicity
Current Drug Metabolism Human Disease and Drug Pharmacology, Complex as Real Life
Current Medicinal Chemistry TRP Channels as Novel Targets for Endogenous Ligands: Focus on Endocannabinoids and Nociceptive Signalling
Current Neuropharmacology Drugs Treatment of Pain in Multiple Sclerosis
Current Clinical Pharmacology Modulation of Potassium Channels as a Therapeutic Approach
Current Pharmaceutical Design Triheptanoin Supplementation to Ketogenic Diet Curbs Cognitive Impairment in APP/PS1 Mice Used as a Model of Familial Alzheimer’s Disease
Current Alzheimer Research The Role of the Urokinase Receptor in Epilepsy, in Disorders of Language, Cognition, Communication and Behavior, and in the Central Nervous System
Current Pharmaceutical Design