Abstract
Diffusion NMR, and in particular the DOSY processing method (Diffusion Ordered SpectroscopY), is an attractive technique to characterize mixtures without first having to separate the components. As a result, DOSY can yield a vast amount of analytical information. General applications of DOSY are reviewed here although we emphasize specialist applications that provide unique data. Such applications include the analysis of kinetic products, the detection of impurities in complex mixtures and the analysis of foodstuffs. We also focus on recent applications, such as the incorporation of DOSY into drug discovery protocols and as a filter in the analysis of natural product extracts or compound libraries. Depending on the characteristics of the sample under study, a careful choice of DOSY NMR experiment and its processing strategy is required to obtain optimum results. Moreover, this review describes the strengths and weakness of the different DOSY experimental and processing methods from the perspective of its application by the analytical chemist to a larger variety of sample types.
Keywords: dosy, diffusion, pulse field gradient stimulated echo, inverse laplace transform, decra
Current Analytical Chemistry
Title: New Applications, Processing Methods and Pulse Sequences Using Diffusion NMR
Volume: 1 Issue: 3
Author(s): J. C. Cobas, P. Groves, M. Martin-Pastor and A. D. Capua
Affiliation:
Keywords: dosy, diffusion, pulse field gradient stimulated echo, inverse laplace transform, decra
Abstract: Diffusion NMR, and in particular the DOSY processing method (Diffusion Ordered SpectroscopY), is an attractive technique to characterize mixtures without first having to separate the components. As a result, DOSY can yield a vast amount of analytical information. General applications of DOSY are reviewed here although we emphasize specialist applications that provide unique data. Such applications include the analysis of kinetic products, the detection of impurities in complex mixtures and the analysis of foodstuffs. We also focus on recent applications, such as the incorporation of DOSY into drug discovery protocols and as a filter in the analysis of natural product extracts or compound libraries. Depending on the characteristics of the sample under study, a careful choice of DOSY NMR experiment and its processing strategy is required to obtain optimum results. Moreover, this review describes the strengths and weakness of the different DOSY experimental and processing methods from the perspective of its application by the analytical chemist to a larger variety of sample types.
Export Options
About this article
Cite this article as:
Cobas C. J., Groves P., Martin-Pastor M. and Capua D. A., New Applications, Processing Methods and Pulse Sequences Using Diffusion NMR, Current Analytical Chemistry 2005; 1 (3) . https://dx.doi.org/10.2174/157341105774573901
DOI https://dx.doi.org/10.2174/157341105774573901 |
Print ISSN 1573-4110 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-6727 |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements