Abstract
Statins are currently used as an effective cholesterol-lowering medication through inhibition of the mevalonate pathway, but recent studies show their potential for bone repair. The bone anabolic effects of statins have been largely attributed to their ability to enhance BMP-2 expression in osteoblast cells. In vitro studies have demonstrated that statins can increase the expression of osteogenic and angiogenic markers such as alkaline phosphatase, vascular endothelial growth factor, and osteocalcin in cells. In vivo, statins have been shown to promote significant new bone growth when injected systemically or locally in combination with a scaffold. The potential anabolic effects of statins on bone make them attractive candidates to support bone regeneration. Since the molecular pathways by which statins induce osteoblast differentiation are still unclear, further investigations are required to elucidate the detailed cellular signaling mechanisms involved to determine the type of statin, optimal dose and mode of delivery to effectively utilize their anabolic effect. This also warrants the development of novel vehicles to locally deliver statins for the desired time periods to support optimal tissue regeneration in vivo.
Keywords: Bone regeneration, local delivery, osteogenic, scaffolds, statin.