Abstract
The blood brain barrier (BBB) maintains homeostasis by regulating the transport of chemicals at the brain interface. However, it is also one of the largest obstacles for drug delivery to the central nervous system (CNS). The utilization of nanoparticles as drug delivery vehicles is one potential solution to overcome this barrier. This review highlights the characteristics of the BBB that inhibit the passage of drugs to the brain, evaluates the efficiency of current in vitro models to mimic the BBB, and discusses the use of nanoparticles in both in vivo and in vitro models to enhance drug permeability across the barrier. In addition, this review describes factors that influence the passage of nanoparticles (type of polymers and surfactant coating, nanoparticle size) across the barrier. Protein opsonization and phagocytic activity of the reticuloendothelial system limits the amount of drug delivered to the brain, and this article summarizes methods to circumvent these issues. This paper also reviews literature covering opportunities and challenges provided with current applications of nanoparticle drug delivery systems for diseases of the brain, including cancer, HIV, and Alzheimer’s disease.
Keywords: Nanoparticles, Blood Brain Barrier, polysorbate 80, TEER, Endothelial Cells.
Current Pharmaceutical Biotechnology
Title:Nanoparticle Enabled Drug Delivery Across the Blood Brain Barrier: in vivo and in vitro Models, Opportunities and Challenges
Volume: 14 Issue: 14
Author(s): Meeta Gidwani and Ajay V. Singh
Affiliation:
Keywords: Nanoparticles, Blood Brain Barrier, polysorbate 80, TEER, Endothelial Cells.
Abstract: The blood brain barrier (BBB) maintains homeostasis by regulating the transport of chemicals at the brain interface. However, it is also one of the largest obstacles for drug delivery to the central nervous system (CNS). The utilization of nanoparticles as drug delivery vehicles is one potential solution to overcome this barrier. This review highlights the characteristics of the BBB that inhibit the passage of drugs to the brain, evaluates the efficiency of current in vitro models to mimic the BBB, and discusses the use of nanoparticles in both in vivo and in vitro models to enhance drug permeability across the barrier. In addition, this review describes factors that influence the passage of nanoparticles (type of polymers and surfactant coating, nanoparticle size) across the barrier. Protein opsonization and phagocytic activity of the reticuloendothelial system limits the amount of drug delivered to the brain, and this article summarizes methods to circumvent these issues. This paper also reviews literature covering opportunities and challenges provided with current applications of nanoparticle drug delivery systems for diseases of the brain, including cancer, HIV, and Alzheimer’s disease.
Export Options
About this article
Cite this article as:
Gidwani Meeta and Singh V. Ajay, Nanoparticle Enabled Drug Delivery Across the Blood Brain Barrier: in vivo and in vitro Models, Opportunities and Challenges, Current Pharmaceutical Biotechnology 2013; 14 (14) . https://dx.doi.org/10.2174/1389201015666140508122558
DOI https://dx.doi.org/10.2174/1389201015666140508122558 |
Print ISSN 1389-2010 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4316 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Lipid Nanoparticles to Deliver miRNA in Cancer
Current Pharmaceutical Biotechnology Prodrugs in Photodynamic Anticancer Therapy
Current Pharmaceutical Design Potential Therapeutic Application of Chondroitin Sulfate/Dermatan Sulfate
Current Drug Discovery Technologies Targeting Never-In-Mitosis-A Related Kinase 5 in Cancer: A Review
Current Medicinal Chemistry Redox Environment and its Meaning for Breast Cancer Cells Fate
Current Cancer Drug Targets Impact of MCP -1 in Atherosclerosis
Current Pharmaceutical Design Dual-Targeted Molecular Probes for Cancer Imaging
Current Pharmaceutical Biotechnology Novel Oncogenic Protein Kinase Inhibitors for Cancer Therapy
Current Medicinal Chemistry - Anti-Cancer Agents An Update on Overcoming MDR1-Mediated Multidrug Resistance in Cancer Chemotherapy
Current Pharmaceutical Design Molecular Imaging of Stem Cell Transplantation for Neurodegenerative Diseases
Current Pharmaceutical Design The Emerging Role of EMT-related lncRNAs in Therapy Resistance and their Applications as Biomarkers
Current Medicinal Chemistry A Targeted Therapy for Protein and Lipid Kinases in Chronic Lymphocytic Leukemia
Current Medicinal Chemistry MicroRNAs Patents: The Road From Bench to Bedsides for Cancer Treatment
Recent Patents on DNA & Gene Sequences Oxidative Stress, Redox Signaling and Cancer Chemoresistance: Putting Together the Pieces of the Puzzle
Current Medicinal Chemistry Natural Sourced Inhibitors of EGFR, PDGFR, FGFR and VEGFRMediated Signaling Pathways as Potential Anticancer Agents
Current Medicinal Chemistry C-Methionine PET/CT in Central Nervous System Tumours: A Review
Current Radiopharmaceuticals Recent Progress in the Development of ATP-Competitive and Allosteric Akt Kinase Inhibitors
Current Topics in Medicinal Chemistry Targeting Gene Therapy for Prostate Cancer
Current Pharmaceutical Design Metabolism of the Endocannabinoids Anandamide and 2-Arachidonoyl Glycerol, A Review, with Emphasis on the Pharmacology of Fatty Acid Amide Hydrolase, A Possible Target for the Treatment of Neurodegenerative Diseases and Pain
Current Medicinal Chemistry - Central Nervous System Agents Discovering Tumor Suppressor Genes Through Genome-Wide Copy Number Analysis
Current Genomics