Abstract
Glutamic acid (Glu) is the major excitatory neurotransmitter in the central nervous system, and interacts with two classes of receptor: metabotropic and ionotropic receptors. Ionotropic receptors are divided according to the affinity of their specific agonists: Nmethyl- D-aspartate (NMDA), amino acid-3-hydroxy-5-methyl-4-isoxazole acid (AMPA) and kainic acid (KA). NMDA receptors (NMDA-R) are macromolecular structures that are formed by different combinations of subunits: NMDAR1 (NR1), NMDAR2 (NR2) and NMDAR3 (NR3). The study of this receptor has aroused great interest, partly due to its role in synaptic plasticity but mainly because of its permeability to the Ca2+ ion. This review examines the molecular composition of NMDA-R and the variants of NR1 subunit editing in association with NR2 subunit dimers, which form the main components of this receptor. Their composition, structure, function and distinct temporal and spatial expression patterns demonstrate the versatility and diversity of functionally different isoforms of NR1 subunits and the various pharmacological properties of the NR2 subunit. Finally, the involvement of NMDA-R in the excitotoxicity phenomenon, as well as, its expression changes under these conditions as neuronal response are also discussed.
Keywords: NMDA receptor, NR1 Subunit, NR2 Subunit, Isoform, Excitotoxicity
Current Pharmaceutical Design
Title:Receptor to Glutamate NMDA-Type: The Functional Diversity of the NR1 Isoforms and Pharmacological Properties
Volume: 19 Issue: 38
Author(s): Mario Eduardo Flores-Soto, Verónica Chaparro-Huerta, Martha Escoto-Delgadillo, Mónica Elisa Ureña-Guerrero, Antoni Camins and Carlos Beas-Zarate
Affiliation:
Keywords: NMDA receptor, NR1 Subunit, NR2 Subunit, Isoform, Excitotoxicity
Abstract: Glutamic acid (Glu) is the major excitatory neurotransmitter in the central nervous system, and interacts with two classes of receptor: metabotropic and ionotropic receptors. Ionotropic receptors are divided according to the affinity of their specific agonists: Nmethyl- D-aspartate (NMDA), amino acid-3-hydroxy-5-methyl-4-isoxazole acid (AMPA) and kainic acid (KA). NMDA receptors (NMDA-R) are macromolecular structures that are formed by different combinations of subunits: NMDAR1 (NR1), NMDAR2 (NR2) and NMDAR3 (NR3). The study of this receptor has aroused great interest, partly due to its role in synaptic plasticity but mainly because of its permeability to the Ca2+ ion. This review examines the molecular composition of NMDA-R and the variants of NR1 subunit editing in association with NR2 subunit dimers, which form the main components of this receptor. Their composition, structure, function and distinct temporal and spatial expression patterns demonstrate the versatility and diversity of functionally different isoforms of NR1 subunits and the various pharmacological properties of the NR2 subunit. Finally, the involvement of NMDA-R in the excitotoxicity phenomenon, as well as, its expression changes under these conditions as neuronal response are also discussed.
Export Options
About this article
Cite this article as:
Eduardo Flores-Soto Mario, Chaparro-Huerta Verónica, Escoto-Delgadillo Martha, Elisa Ureña-Guerrero Mónica, Camins Antoni and Beas-Zarate Carlos, Receptor to Glutamate NMDA-Type: The Functional Diversity of the NR1 Isoforms and Pharmacological Properties, Current Pharmaceutical Design 2013; 19 (38) . https://dx.doi.org/10.2174/1381612811319380003
DOI https://dx.doi.org/10.2174/1381612811319380003 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Inflammation and Neurogenesis in Temporal Lobe Epilepsy
Current Drug Targets - CNS & Neurological Disorders Pediatric Catatonia: Updating An Old Syndrome in Young People
Current Psychiatry Reviews A Magnetic Resonance Spectroscopy Study of Lovastatin for Treating Bipolar Mood Disorder: A 4-Week Randomized Double-Blind, Placebo- Controlled Clinical Trial
Recent Patents on Inflammation & Allergy Drug Discovery Triggers of Cell Death in the Developing Brain
Current Pediatric Reviews Biodistribution Processes as Underestimated Confounders in Translational Stroke Research
Current Medicinal Chemistry Patent Selections:
Recent Patents on Inflammation & Allergy Drug Discovery Structure, Function and Biological Relevance of Prolyl Oligopeptidase
Current Protein & Peptide Science Parallel and Multiplexed Bead-Based Assays and Encoding Strategies
Combinatorial Chemistry & High Throughput Screening Patent Annotations
Recent Patents on CNS Drug Discovery (Discontinued) Nose-to-Brain Drug Delivery by Nanoparticles in the Treatment of Neurological Disorders
Current Medicinal Chemistry Neurogenesis as a New Target for the Development of Antidepressant Drugs
Current Pharmaceutical Design Tailored Multi-Target Agents. Applications and Design Considerations
Current Pharmaceutical Design PET Imaging of Opioid Receptors in Pain: Progress and New Directions
Current Pharmaceutical Design The Hippocampal Autophagic Machinery is Depressed in the Absence of the Circadian Clock Protein PER1 that may Lead to Vulnerability During Cerebral Ischemia
Current Neurovascular Research Anesthetic Considerations for Electroconvulsive Therapy-Especially Hemodynamic and Respiratory Management
Current Psychiatry Reviews The Design of Multi-target Drugs to Treat Cardiovascular Diseases: Two (or more) Birds on One Stone
Current Topics in Medicinal Chemistry Mind-Body Practices and the Adolescent Brain: Clinical Neuroimaging Studies
Adolescent Psychiatry The Emerging Role of Metabotropic Glutamate Receptors in the Pathophysiology of Chronic Stress-Related Disorders
Current Neuropharmacology Expressed Emotion and Eating Disorders: An Updated Review
Current Psychiatry Reviews CAR, The Continuously Advancing Receptor, in Drug Metabolism and Disease
Current Drug Metabolism