Abstract
Glutamic acid (Glu) is the major excitatory neurotransmitter in the central nervous system, and interacts with two classes of receptor: metabotropic and ionotropic receptors. Ionotropic receptors are divided according to the affinity of their specific agonists: Nmethyl- D-aspartate (NMDA), amino acid-3-hydroxy-5-methyl-4-isoxazole acid (AMPA) and kainic acid (KA). NMDA receptors (NMDA-R) are macromolecular structures that are formed by different combinations of subunits: NMDAR1 (NR1), NMDAR2 (NR2) and NMDAR3 (NR3). The study of this receptor has aroused great interest, partly due to its role in synaptic plasticity but mainly because of its permeability to the Ca2+ ion. This review examines the molecular composition of NMDA-R and the variants of NR1 subunit editing in association with NR2 subunit dimers, which form the main components of this receptor. Their composition, structure, function and distinct temporal and spatial expression patterns demonstrate the versatility and diversity of functionally different isoforms of NR1 subunits and the various pharmacological properties of the NR2 subunit. Finally, the involvement of NMDA-R in the excitotoxicity phenomenon, as well as, its expression changes under these conditions as neuronal response are also discussed.
Keywords: NMDA receptor, NR1 Subunit, NR2 Subunit, Isoform, Excitotoxicity
Current Pharmaceutical Design
Title:Receptor to Glutamate NMDA-Type: The Functional Diversity of the NR1 Isoforms and Pharmacological Properties
Volume: 19 Issue: 38
Author(s): Mario Eduardo Flores-Soto, Verónica Chaparro-Huerta, Martha Escoto-Delgadillo, Mónica Elisa Ureña-Guerrero, Antoni Camins and Carlos Beas-Zarate
Affiliation:
Keywords: NMDA receptor, NR1 Subunit, NR2 Subunit, Isoform, Excitotoxicity
Abstract: Glutamic acid (Glu) is the major excitatory neurotransmitter in the central nervous system, and interacts with two classes of receptor: metabotropic and ionotropic receptors. Ionotropic receptors are divided according to the affinity of their specific agonists: Nmethyl- D-aspartate (NMDA), amino acid-3-hydroxy-5-methyl-4-isoxazole acid (AMPA) and kainic acid (KA). NMDA receptors (NMDA-R) are macromolecular structures that are formed by different combinations of subunits: NMDAR1 (NR1), NMDAR2 (NR2) and NMDAR3 (NR3). The study of this receptor has aroused great interest, partly due to its role in synaptic plasticity but mainly because of its permeability to the Ca2+ ion. This review examines the molecular composition of NMDA-R and the variants of NR1 subunit editing in association with NR2 subunit dimers, which form the main components of this receptor. Their composition, structure, function and distinct temporal and spatial expression patterns demonstrate the versatility and diversity of functionally different isoforms of NR1 subunits and the various pharmacological properties of the NR2 subunit. Finally, the involvement of NMDA-R in the excitotoxicity phenomenon, as well as, its expression changes under these conditions as neuronal response are also discussed.
Export Options
About this article
Cite this article as:
Eduardo Flores-Soto Mario, Chaparro-Huerta Verónica, Escoto-Delgadillo Martha, Elisa Ureña-Guerrero Mónica, Camins Antoni and Beas-Zarate Carlos, Receptor to Glutamate NMDA-Type: The Functional Diversity of the NR1 Isoforms and Pharmacological Properties, Current Pharmaceutical Design 2013; 19 (38) . https://dx.doi.org/10.2174/1381612811319380003
DOI https://dx.doi.org/10.2174/1381612811319380003 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Chemistry and Biology of Cyperus scariosus: An Overview
Current Chemical Biology Pregabalin Treatment does not Affect Amyloid Pathology in 5XFAD Mice
Current Alzheimer Research Desensitization of 5-HT-1A Somatodentritic Receptors in Tryptophan Treated and Co-treated Rats Induced by Methylphenidate
Current Clinical Pharmacology Glutamate-regulated Behavior, Transmitter Release, Gene Expression and Addictive Plasticity in the Striatum: Roles of Metabotropic Glutamate Receptors
Current Neuropharmacology 5-HT7 Receptor Ligands: Recent Developments and Potential Therapeutic Applications
Mini-Reviews in Medicinal Chemistry Clonal Expansion of Mitochondrial DNA Deletions and the Progression of Multiple Sclerosis
CNS & Neurological Disorders - Drug Targets Pharmacotherapy in Pedatric PTSD: A Developmentally-Focused Review of the Evidence
Current Psychopharmacology Pathogenesis, Experimental Models and Contemporary Pharmacotherapy of Irritable Bowel Syndrome: Story About the Brain-Gut Axis
Current Neuropharmacology Clinically Relevant Drug Interactions with Anti-Alzheimer's Drugs
CNS & Neurological Disorders - Drug Targets Mitochondrial Biogenesis: A Therapeutic Target for Neurodevelopmental Disorders and Neurodegenerative Diseases
Current Pharmaceutical Design Reactive Astrocytes as Potential Manipulation Targets in Novel Cell Replacement Therapy of Parkinsons Disease
Current Drug Targets Synthesis, Antifungal Activity and Carbonic Anhydrase Inhibitory Properties of Cu (II) Bis (3, 4 Dimethoxybenzoate) Bis (Nicotinamide) Dihydrate
Current Enzyme Inhibition Are Antipsychotics Useful in the Treatment of Anorexia Nervosa? A Review of the Literature
Current Psychopharmacology SPECT Radiopharmaceuticals for Dementia
Current Radiopharmaceuticals High Throughput Screening for Bioactive Components from Traditional Chinese Medicine
Combinatorial Chemistry & High Throughput Screening Monocyclic and Fused Azines and Azoles as Histamine H<sub>4</sub> Receptor Ligands
Current Medicinal Chemistry Homocysteine and Cerebral Stroke in Developing Countries
Current Medicinal Chemistry Neurogenic Drugs and Compounds to Treat CNS Diseases and Disorders
Central Nervous System Agents in Medicinal Chemistry Nitric Oxide, Epileptic Seizures, and Action of Antiepileptic Drugs
CNS & Neurological Disorders - Drug Targets Recent Development in Substituted Benzothiazole as an Anticonvulsant Agent
Mini-Reviews in Medicinal Chemistry