Abstract
The PI3K/AKT/mTOR pathway is an intracellular signaling pathway, being important in apoptosis hence cancer such as breast cancer and non-small-cell lung cancer. It signaling axis controls cell proliferation and survival and has achieved major importance as a target for cancer therapy. The serine/threonine kinase Akt (also known as protein kinase B or PKB), since its initial discovery as a protooncogene, has become a major focus of attention because of its critical regulatory role in diverse cellular processes, including cancer progression and insulin metabolism. The Akt cascade is activated by receptor tyrosine kinases, integrins, B and T cell receptors, cytokine receptors, G protein coupled receptors and other stimuli that induce the production of phosphatidylinositol 3,4,5 triphosphates (PtdIns(3,4,5)P3) by phosphoinositide 3-kinase (PI3K). Therefore, PI3K plays an important role in in numerous cellular functions such as cell growth, proliferation, differentiation, motility, survival and intracellular trafficking. In this review, we introduced the structure of the PI3K, and then focused on its biological activities. In addition, we reviewed the advances in the researches of PI3K as well as related inhibitors over the last couple of decades. Finally, we also discussed the prospect and developmental trend of phosphatidylinositol 3-kinase as antitumor agents.
Keywords: Antitumor agents, cancer therapy, G protein, phosphoinositide 3-kinase, PI3K/AKT/mTOR pathway, serine/threonine kinase Akt.