Abstract
Malignant melanoma is an extremely aggressive and metastatic cancer, highly resistant to conventional treatment modalities. Understanding of fundamental mechanisms responsible for its genesis and progression is critical for development of successful chemotherapeutic treatment. It is becoming clear that melanoma results from complex changes in multiple signaling pathways that control cell proliferation and ability to evade the cell death processes. Impairment or hyper-activation of some components of these pathways may lead to malignant transformation and cancer development. In the present review we consider the current data on involvement of such signaling pathways as cyclin/CDK, Ras/Raf/MEK/MAPK, JNK/c-Jun/AP-1, PI3K/Akt/PTEN/mTOR, IKK/I-κB/NF-κB, Wnt/β-catenin, Notch, Jak/STAT, MITF and some growth factors in regulation of the cell cycle progression, apoptosis and development of human cutaneous melanoma. Understanding of molecular aberrations that underlie melanoma oncogenesis is essential for improvement of diagnosis, accurate prognosis assessment, and rational design of effective therapeutics. Inhibitors of these pathways may serve as promising tools for anti-melanoma targeted therapy. Some novel anti-melanoma target drugs are characterized.
Keywords: Drug, melanoma, metastasis, signaling, targeted therapy, tumorigenesis.