Abstract
This article was to have been written by Kees Weijer, an outstanding pioneer in Dictyostelium research. It was (and is) to celebrate J.T. Bonner’s and Weijer’s contributions to the field and those of the other great pioneers. Unfortunately, Weijer was unable to write his article, due to ill health and since I have some knowledge of this field, I took it over. The article summarises some main results and ideas in Dictyostelium research and their relevance for development of more advanced organisms.
Keywords: Dictyostelium, Excitable medium, Waves, Spirals, Dislocation, Somitogenesis.
Current Genomics
Title:Dictyostelium: The Mathematician's Organism
Volume: 14 Issue: 6
Author(s): A.J. Durston
Affiliation:
Keywords: Dictyostelium, Excitable medium, Waves, Spirals, Dislocation, Somitogenesis.
Abstract: This article was to have been written by Kees Weijer, an outstanding pioneer in Dictyostelium research. It was (and is) to celebrate J.T. Bonner’s and Weijer’s contributions to the field and those of the other great pioneers. Unfortunately, Weijer was unable to write his article, due to ill health and since I have some knowledge of this field, I took it over. The article summarises some main results and ideas in Dictyostelium research and their relevance for development of more advanced organisms.
Export Options
About this article
Cite this article as:
Durston A.J., Dictyostelium: The Mathematician's Organism, Current Genomics 2013; 14 (6) . https://dx.doi.org/10.2174/13892029113149990010
DOI https://dx.doi.org/10.2174/13892029113149990010 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements