Abstract
Myoglobin is an α-helical globular protein containing two highly conserved tryptophanyl residues at positions 7 and 14 in the N-terminal region. The simultaneous substitution of the two residues impairs the productive folding of the protein making the polypeptide chain highly prone to aggregate forming amyloid fibrils at physiological pH and room temperature. The role played by tryptophanyl residues in driving the productive folding process was investigated by providing structural details at low resolution of compact intermediate of three mutated apomyoglobins, i.e., W7F, W14F and the amyloid forming mutant W7FW14F.
In particular, we followed the hydrogen/deuterium exchange rate of protein segments using proteolysis with pepsin followed by mass spectrometry analysis. The results revealed significant differences in the N-terminal region, consisting in an alteration of the physico-chemical properties of the 7-11 segment for W7F and in an increase of local flexibility of the12-29 segment for W14F. In the double trypthophanyl substituted mutant, these effects are additive and impair the formation of native-like contacts and favour inter-chain interactions leading to protein aggregation and amyloid formation at physiological pH.
Keywords: Amyloid aggregation, apomyoglobin, H/D exchanges, protein folding, protein misfolding, W-F substitution.
Protein & Peptide Letters
Title:W-F Substitutions in Apomyoglobin Increase the Local Flexibility of the N-terminal Region Causing Amyloid Aggregation: A H/D Exchange Study
Volume: 20 Issue: 8
Author(s): Giuseppe Infusini, Clara Iannuzzi, Silvia Vilasi, Rosa Maritato, Leila Birolo, Daniela Pagnozzi, Piero Pucci, Gaetano Irace and Ivana Sirangelo
Affiliation:
Keywords: Amyloid aggregation, apomyoglobin, H/D exchanges, protein folding, protein misfolding, W-F substitution.
Abstract: Myoglobin is an α-helical globular protein containing two highly conserved tryptophanyl residues at positions 7 and 14 in the N-terminal region. The simultaneous substitution of the two residues impairs the productive folding of the protein making the polypeptide chain highly prone to aggregate forming amyloid fibrils at physiological pH and room temperature. The role played by tryptophanyl residues in driving the productive folding process was investigated by providing structural details at low resolution of compact intermediate of three mutated apomyoglobins, i.e., W7F, W14F and the amyloid forming mutant W7FW14F.
In particular, we followed the hydrogen/deuterium exchange rate of protein segments using proteolysis with pepsin followed by mass spectrometry analysis. The results revealed significant differences in the N-terminal region, consisting in an alteration of the physico-chemical properties of the 7-11 segment for W7F and in an increase of local flexibility of the12-29 segment for W14F. In the double trypthophanyl substituted mutant, these effects are additive and impair the formation of native-like contacts and favour inter-chain interactions leading to protein aggregation and amyloid formation at physiological pH.
Export Options
About this article
Cite this article as:
Infusini Giuseppe, Iannuzzi Clara, Vilasi Silvia, Maritato Rosa, Birolo Leila, Pagnozzi Daniela, Pucci Piero, Irace Gaetano and Sirangelo Ivana, W-F Substitutions in Apomyoglobin Increase the Local Flexibility of the N-terminal Region Causing Amyloid Aggregation: A H/D Exchange Study, Protein & Peptide Letters 2013; 20 (8) . https://dx.doi.org/10.2174/0929866511320080006
DOI https://dx.doi.org/10.2174/0929866511320080006 |
Print ISSN 0929-8665 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5305 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Modulation of Endoplasmic Reticulum Stress: An Opportunity to Prevent Neurodegeneration?
CNS & Neurological Disorders - Drug Targets Pharmacophore-based Drug Design of Novel Potential Tau Ligands for Alzheimer's Disease Treatment
Current Physical Chemistry Regulation and Quantification of Cellular Mitochondrial Morphology and Content
Current Pharmaceutical Design Meet Our Associate Editor:
Current Molecular Medicine Targeting the Eph System with Peptides and Peptide Conjugates
Current Drug Targets Novel Drug Delivery Systems for Releasing Growth Factors to the CNS: Focus on Alzheimer`s and Parkinson`s Diseases
Mini-Reviews in Medicinal Chemistry Spinal Muscular Atrophy: Molecular Mechanisms
Current Molecular Medicine Calpains as a Target for Therapy of Neurodegenerative Diseases: Putative Role of Lithium
Current Drug Metabolism Commentary (Changes of Synaptic Plasticity in Multiple Sclerosis)
CNS & Neurological Disorders - Drug Targets Do mtDNA Mutations Participate in the Pathogenesis of Sporadic Parkinsons Disease?
Current Genomics Tetracyclines and Neuromuscular Disorders
Current Neuropharmacology Matrix Metalloproteinases: New Routes to the Use of MT1-MMP As A Therapeutic Target in Angiogenesis-Related Disease
Current Pharmaceutical Design The Controversial Role of Adenosine A2A Receptor Antagonists as Neuro-protective Agents
Current Medicinal Chemistry - Central Nervous System Agents Stability, Disposition, and Penetration of Catalytic Antioxidants Mn-Porphyrin and Mn-Salen and of Methylprednisolone in Spinal Cord Injury
Central Nervous System Agents in Medicinal Chemistry Neuroprotection by Association of Palmitoylethanolamide with Luteolin in Experimental Alzheimer’s Disease Models: The Control of Neuroinflammation
CNS & Neurological Disorders - Drug Targets AAVs Anatomy: Roadmap for Optimizing Vectors for Translational Success
Current Gene Therapy The Role of Viruses in Neurodegenerative and Neurobehavioral Diseases
CNS & Neurological Disorders - Drug Targets Patent Selections
Recent Patents on CNS Drug Discovery (Discontinued) Therapeutic Potential of Metabotropic Glutamate Receptor Modulators
Current Neuropharmacology The Interplay between G-quadruplex and Transcription
Current Medicinal Chemistry